6,421 research outputs found

    Cooperative cell motility during tandem locomotion of amoeboid cells.

    Get PDF
    Streams of migratory cells are initiated by the formation of tandem pairs of cells connected head to tail to which other cells subsequently adhere. The mechanisms regulating the transition from single to streaming cell migration remain elusive, although several molecules have been suggested to be involved. In this work, we investigate the mechanics of the locomotion ofDictyosteliumtandem pairs by analyzing the spatiotemporal evolution of their traction adhesions (TAs). We find that in migrating wild-type tandem pairs, each cell exerts traction forces on stationary sites (∼80% of the time), and the trailing cell reuses the location of the TAs of the leading cell. Both leading and trailing cells form contractile dipoles and synchronize the formation of new frontal TAs with ∼54-s time delay. Cells not expressing the lectin discoidin I or moving on discoidin I-coated substrata form fewer tandems, but the trailing cell still reuses the locations of the TAs of the leading cell, suggesting that discoidin I is not responsible for a possible chemically driven synchronization process. The migration dynamics of the tandems indicate that their TAs' reuse results from the mechanical synchronization of the leading and trailing cells' protrusions and retractions (motility cycles) aided by the cell-cell adhesions

    A free boundary model for oxygen diffusion in a spherical medium

    Get PDF
    The goal of this article is to find a correct approximated solution using a polynomial of sixth degree for the free boundary problem corresponding to the diffusion of oxygen in a spherical medium with simultaneous absorption at a constant rate, and to show some mistakes in previously published solutions.Comment: 10 pages, 6 figures and 2 tables. Paper accepted, in press in Journal of Biological Systems (2015

    Perfect imaging with geodesic waveguides

    Full text link
    Transformation optics is used to prove that a spherical waveguide filled with an isotropic material with radial refractive index n=1/r has radial polarized modes (i.e. the electric field has only radial component) with the same perfect focusing properties as the Maxwell Fish-Eye lens. The approximate version of that device using a thin waveguide with a homogenous core paves the way to experimentally prove perfect imaging in the Maxwell Fish Eye lens

    Conjugated Polymers for Organic Electronics: Structural and Electronic Characteristics

    Get PDF
    The use of organic materials to design electronic devices has actually presented a broad interest for because they constitute an ecological and suitable resource for our current "electronic world". These materials provide several advantages (low cost, light weight, good flexibility and solubility to be easily printed) that cannot be afforded with silicium. They can also potentially interact with biological systems, something impossible with inorganic devices. Between these materials we can include small molecules, polymers, fullerenes, nanotubes, graphene, other carbon-based molecular structures and hybrid materials. Actually these materials are being used to build electronic structures into electronic devices, like organic light-emitting diodes (OLEDs), organic solar cells (OSCs), and organic field-effect transistors (OFETs), constituting and already commercial reality. Some of them are used on a widespread basis1, and are the focus of some recent researches in molecules2,3 and polymers4-6 suitable for these purposes. In this study we analyze the electronic and molecular characteristics of some different π-conjugated structures in order to evaluate their potential as semiconducting materials for organic electronics. For this purpose we focus on the study of conjugated polymers with different backbones configurations: (i) donor-acceptor configuration, (ii) 1D lineal or 2D branched conjugated backbones, and (iii) encapsulated polymers. To achieve this goal, we use a combined experimental and theoretical approach that includes electronic spectroscopies (i.e., absorption, emission and microsecond transient absorption), vibrational Raman spectroscopy and DFT calculations. These structural modifications are found to provoke a strong impact on the HOMO and LUMO levels and the molecular morphology, and, consequently, on their suitability as semiconductors in organic electronic applications.References 1. S. R. Forrest, M. E. Thompson. Chem. Rev., 2007, 107, 923 2. R. C. González-Cano, G. Saini, J. Jacob, J. T. López Navarrete, J. Casado and M. C. Ruiz Delgado. Chem. Eur. J. 2013, 19, 17165 3. J. L. Zafra, R. C. González-Cano, M. C. Ruiz Delgado, Z. Sun, Y. Li, J. T. López Navarrete, J. Wu and J. Casado. J. Chem. Phys. , 2014, 140, 054706 4. M. Goll, A. Ruff, E. Muks, F. Goerigk, B. Omiecienski, I. Ruff, R. C. González-Cano, J. T. López Navarrete, M. C. Ruiz Delgado, S. Ludwigs. Beilstein J. Org. Chem., 2015, 11, 335. 5. D. Herrero-Carvajal, A. de la Peña, R. C. González-Cano, C. Seoane, J. T. López Navarrete, J. L. Segura, J. Casado, M. C. Ruiz Delgado, J. Phys. Chem. C, 2014, 118, 9899. 6. M. Scheuble, Y. M. Gross, D. Trefz, M. Brinkmann, J. T. López Navarrete, M. C. Ruiz Delgado, and S. Ludwigs, Macromolecules, 2015, 48, 7049.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Antioxidant activity of alkyl gallates and glycosyl alkyl gallates in fish oil in water emulsions: Relevance of their surface active properties and of the type of emulsifier

    Get PDF
    The antioxidant activity of gallic acid and a series of alkyl gallates (C4-C18) and glycosylated alkyl gallates (C4-C18) on fish oil-in-water emulsions was studied. Three types of emulsifiers, lecithin, Tween-20 and sodium dodecyl sulphate (SDS) were tested. A nonlinear behavior of the antioxidant activity of alkyl gallates when increasing alkyl chain length was observed for emulsions prepared with lecithin. Medium-size alkyl gallates (C6-C12) were the best antioxidants. In contrast, for emulsions prepared with Tween-20, the antioxidants seem to follow the polar paradox. Glucosyl alkyl gallates were shown previously to be better surfactants than alkyl gallates. Nevertheless, they exhibited a worse antioxidant capacity than their corresponding alkyl gallates, in emulsions prepared with lecithin or Tween-20, indicating the greater relevance of having three OH groups at the polar head in comparison with having improved surfactant properties but just a di-ortho phenolic structure in the antioxidant

    Seasonal variability of antioxidant biomarkers in mussels Mytilus galloprovincialis from the Spanish N-NW coast.

    Get PDF
    Marine organisms are highly seasonal animals in relation to their physiology which depends, among other factors, on their annual cycle of reproduction. In bivalves, reproductive cycle is regulated by two main environmental factors: temperature and food availability. Specifically, bivalves are undergoing high variable environmental conditions. Integrated pollution monitoring carried out by the IEO along the N-NW coast of Spain has evidenced that the variability of the environmental conditions produce spatial differences in mussel condition which seems to mask the biomarker responses to pollution. Thus, there is a need to study the natural variability of biological responses used as pollution biomarkers at different seasons and in different habitats in order to establish an adequate link between chemical pollution and biological responses. This study aims to assess the natural variability of some biomarker responses on the mussel Mytilus galloprovincialis in 5 different sites from the Spanish Marine Pollution Monitoring Program which are differentiated in their natural ecology and their anthropogenic pressure. The potential influence of environmental and endogenous factors that can cause biomarker´s seasonal fluctuations was examined. Biomarkers analyzed in this study are considered among the most usefull biological tools applied in pollution monitoring programs, including exposure indicators (superoxide dismutase –SOD-, catalase –CAT-, glutathione reductase –GR-, glutathione peroxidase –GPx-, glutathione-s-transfersase –GST-) and a damage indicator (lipid peroxidation –LPO-). Mussel biological characterization from a histological and anatomical point of view was also performed. Results evidenced that biomarkers were clearly influenced by the annual cycle (all of them were affected by the season) but also significant differences between sites were found in some biomarkers (GR and GST). Thus, not only environmental but also endogenous factors must be considered in monitoring programs in the study of biomarkers responses.Society of Environmenta Toxicology and Chemistry (SETAC

    Gaussian Sum Filtering for Wiener State-Space Models with a Class of Non-Monotonic Piecewise Nonlinearities

    Get PDF
    State estimation of nonlinear dynamical systems has gained significant attention due to its countless applications in control, signal processing, fault diagnosis, and power networks. The complexity posed by challenging nonlinearities like dead-zones, saturations, and linear rectification requires advanced state estimation. This paper presents a novel filtering technique designed for state-space Wiener systems encompassing these specific nonlinear behaviors. The filtering approach developed in this work introduces an explicit model for the probability function of the nonlinear output conditioned to the system state, which is derived from a Gaussian quadrature-based approximation. A Gaussian sum filtering algorithm is then used to obtain the filtering distributions and state estimates of systems with the aforementioned nonlinearities. Extensive numerical simulations are conducted to assess the accuracy of the proposed method compared to conventional techniques
    corecore