38,399 research outputs found
InAs/InP single quantum wire formation and emission at 1.5 microns
Isolated InAs/InP self-assembled quantum wires have been grown using in situ
accumulated stress measurements to adjust the optimal InAs thickness. Atomic
force microscopy imaging shows highly asymmetric nanostructures with average
length exceeding more than ten times their width. High resolution optical
investigation of as-grown samples reveals strong photoluminescence from
individual quantum wires at 1.5 microns. Additional sharp features are related
to monolayer fluctuations of the two dimensional InAs layer present during the
early stages of the quantum wire self-assembling process.Comment: 4 pages and 3 figures submitted to Applied Physics Letter
Surface structure in simple liquid metals. An orbital free first principles study
Molecular dynamics simulations of the liquid-vapour interfaces in simple
sp-bonded liquid metals have been performed using first principles methods.
Results are presented for liquid Li, Na, K, Rb, Cs, Mg, Ba, Al, Tl, and Si at
thermodynamic conditions near their respective triple points, for samples of
2000 particles in a slab geometry. The longitudinal ionic density profiles
exhibit a pronounced stratification extending several atomic diameters into the
bulk, which is a feature already experimentally observed in liquid K, Ga, In,
Sn and Hg. The wavelength of the ionic oscillations shows a good scaling with
the radii of the associated Wigner-Seitz spheres. The structural rearrangements
at the interface are analyzed in terms of the transverse pair correlation
function, the coordination number and the bond-angle distribution between
nearest neighbors. The valence electronic density profile also shows (weaker)
oscillations whose phase, with respect to those of the ionic profile, changes
from opposite phase in the alkalis to almost in-phase for Si.Comment: 16 pages, 18 figures, 5 tables. Submitted to Phys. Rev.
Noise suppression due to long-range Coulomb interaction: Crossover between diffusive and ballistic transport regimes
We present a Monte Carlo analysis of shot-noise suppression due to long-range
Coulomb interaction in semiconductor samples under a crossover between
diffusive and ballistic transport regimes. By varying the mean time between
collisions we find that the strong suppression observed under the ballistic
regime persists under quasi-ballistic conditions, before being washed out when
a complete diffusive regime is reached.Comment: RevTex, 3 pages, 4 figures, minor correction
Interplay of Coulomb and electron-phonon interactions in graphene
We consider mutual effect of the electron-phonon and strong Coulomb
interactions on each other by summing up leading logarithmic corrections via
the renormalization group approach. We find that the Coulomb interaction
enhances electron coupling to the intervalley A1 optical phonons, but not to
the intravalley E2 phonons
- …