134 research outputs found
Animal or Plant: Which Is the Better Fog Water Collector?
Occasional fog is a critical water source utilised by plants and animals in the Namib Desert. Fog basking beetles (Onymacris unguicularis, Tenebrionidae) and Namib dune bushman grass (Stipagrostris sabulicola, Poaceae) collect water directly from the fog. While the beetles position themselves optimally for fog water collection on dune ridges, the grass occurs predominantly at the dune base where less fog water is available. Differences in the fog-water collecting abilities in animals and plants have never been addressed. Here we place beetles and grass side-by-side in a fog chamber and measure the amount of water they collect over time. Based on the accumulated amount of water over a two hour period, grass is the better fog collector. However, in contrast to the episodic cascading water run-off from the grass, the beetles obtain water in a steady flow from their elytra. This steady trickle from the beetles' elytra to their mouth could ensure that even short periods of fog basking â while exposed to predators â will yield water. Up to now there is no indication of specialised surface properties on the grass leafs, but the steady run-off from the beetles could point to specific property adaptations of their elytra surface
Athena MIMOS II Mossbauer spectrometer investigation
Mössbauer spectroscopy is a powerful tool for quantitative mineralogical analysis of Fe-bearing materials. The miniature Mössbauer spectrometer MIMOS II is a component of the Athena science payload launched to Mars in 2003 on both Mars Exploration Rover missions. The instrument has two major components: (1) a rover-based electronics board that contains power supplies, a dedicated central processing unit, memory, and associated support electronics and (2) a sensor head that is mounted at the end of the instrument deployment device (IDD) for placement of the instrument in physical contact with soil and rock. The velocity transducer operates at a nominal frequency of 25 Hz and is equipped with two 57Co/Rh Mössbauer sources. The reference source (5 mCi landed intensity), reference target (alpha-Fe2O3 plus alpha-Fe0), and PIN-diode detector are configured in transmission geometry and are internal to the instrument and used for its calibration. The analysis Mössbauer source (150 mCi landed intensity) irradiates Martian surface materials with a beam diameter of 1.4 cm. The backscatter radiation is measured by four PIN-diode detectors. Physical contact with surface materials is sensed with a switch-activated contact plate. The contact plate and reference target are instrumented with temperature sensors. Assuming 18% Fe for Martian surface materials, experiment time is 6–12 hours during the night for quality spectra (i.e., good counting statistics); 1–2 hours is sufficient to identify and quantify the most abundant Fe-bearing phases. Data stored internal to the instrument for selectable return to Earth include Mössbauer and pulse-height analysis spectra (512 and 256 channels, respectively) for each of the five detectors in up to 13 temperature intervals (65 Mössbauer spectra), engineering data for the velocity transducer, and temperature measurements. The total data volume is 150 kB. The mass and power consumption are 500 g (400 g for the sensor head) and 2 W, respectively. The scientific measurement objectives of the Mössbauer investigation are to obtain for rock, soil, and dust (1) the mineralogical identification of iron-bearing phases (e.g., oxides, silicates, sulfides, sulfates, and carbonates), (2) the quantitative measurement of the distribution of iron among these iron-bearing phases (e.g., the relative proportions of iron in olivine, pyroxenes, ilmenite, and magnetite in a basalt), (3) the quantitative measurement of the distribution of iron among its oxidation states (e.g., Fe2+, Fe3+, and Fe6+), and (4) the characterization of the size distribution of magnetic particles. Special geologic targets of the Mössbauer investigation are dust collected by the Athena magnets and interior rock and soil surfaces exposed by the Athena Rock Abrasion Tool and by trenching with rover wheels
Decommissioning normal: COVIDâ19 as a disruptor of school norms for young people with learning disabilities
To slow the spread of COVID-19, on 20 March 2020, nurseries, schools and colleges across England were closed to all learners, apart from those who were children of key workers or were considered âvulnerable.â As young people with learning disabilities, families, professionals and schools become acquainted with the Erfahrung of the new horizon brought about by COVID-19, the negativity of altered social inclusion is becoming the ânew normal.â Capturing this transitory moment in time, this paper reflexively analyses the curiously productive variables of altered ecological pathways to social inclusion for people with learning disabilities. Taking a hermeneutic stance, this paper draws on Gadamer's construction of the nature of new experiences. Focussed on the experience of social inclusion during the COVID-19 pandemic, semi-structured interviews were conducted with six key stakeholders. As the phenomenon in question was new, an inductive approach to thematic analysis was applied. The critical tenet of this paper is that the Erfahrung of COVID-19 has created the conditions for a ânew normalâ which have afforded children with learning disabilities altered opportunities for social inclusion, whether that be through increased power/agency for them and their families and/or new modes of connectedness leading to enhanced relationships. Whilst the impact of COVID-19 has been a negative one for many aspects of society, application of Simplican and Gadamer's theories on social inclusion and the nature of new experiences has permitted the surfacing of new possibilities for the social inclusion of children with learning disabilities.N/
Spectral analysis of coastal vegetation and land cover using AISA\u3csub\u3e+\u3c/sub\u3e hyperspectral data
This paper describes a spectral analysis of several coastal land cover types inSouth Padre Island, Texas using AISA+ hyperspectral remote sensing data.AISA+ hyperspectral data (1.5 metre) were acquired throughout the area on 9March 2005. Data over mangrove areas were converted to percent reflectanceusing four 8 Ă8 metre reflectance tarps (4%, 16%, 32% and 48%) and empiricalline calibration. These data were then compared to percent reflectance values ofother terrestrial features to determine the ability of AISA+ data to distinguishfeatures in coastal environments. Results suggest that these data may beappropriate to discriminate coastal mangrove vegetation and provide researcherswith high resolution spatial and spectral information to more effectively managecoastal ecosystems
Microsatellite mutations and inferences about human demography.
Microsatellites have been widely used as tools for population studies. However, inference about population processes relies on the specification of mutation parameters that are largely unknown and likely to differ across loci. Here, we use data on somatic mutations to investigate the mutation process at 14 tetranucleotide repeats and carry out an advanced multilocus analysis of different demographic scenarios on worldwide population samples. We use a method based on less restrictive assumptions about the mutation process, which is more powerful to detect departures from the null hypothesis of constant population size than other methods previously applied to similar data sets. We detect a signal of population expansion in all samples examined, except for one African sample. As part of this analysis, we identify an "anomalous" locus whose extreme pattern of variation cannot be explained by variability in mutation size. Exaggerated mutation rate is proposed as a possible cause for its unusual variation pattern. We evaluate the effect of using it to infer population histories and show that inferences about demographic histories are markedly affected by its inclusion. In fact, exclusion of the anomalous locus reduces interlocus variability of statistics summarizing population variation and strengthens the evidence in favor of demographic growth
- âŠ