46 research outputs found
WNT signalling in prostate cancer
Genome sequencing and gene expression analyses of prostate tumours have highlighted the potential importance of genetic and epigenetic changes observed in WNT signalling pathway components in prostate tumours-particularly in the development of castration-resistant prostate cancer. WNT signalling is also important in the prostate tumour microenvironment, in which WNT proteins secreted by the tumour stroma promote resistance to therapy, and in prostate cancer stem or progenitor cells, in which WNT-β-catenin signals promote self-renewal or expansion. Preclinical studies have demonstrated the potential of inhibitors that target WNT receptor complexes at the cell membrane or that block the interaction of β-catenin with lymphoid enhancer-binding factor 1 and the androgen receptor, in preventing prostate cancer progression. Some WNT signalling inhibitors are in phase I trials, but they have yet to be tested in patients with prostate cancer
Völkisch und sozial? : Neonazistische Agitation gegen die neue EU-Freizügigkeit für Arbeitnehmerinnen
Wnt/β-catenin signalling pathway is crucial for the formation of many tissues and organs during development. In recent years, this pathway has also been found to regulate the biology of stem cells in the intestine and probably in other organs in adult life. Abnormal activation of Wnt/β-catenin signalling, which controls the expression of a high number of genes, is critical for the initiation and progression of most colorectal cancers. In line with this, the gene expression signature induced by activation of the Wnt/β-catenin pathway defines the intestinal stem cells present at the bottom of the crypts and also colon cancer stem cells. This supports the importance of inhibitors of the Wnt/β-catenin pathway as potential agents in colorectal cancer therapy. However, the complexity, wide activity in the organism modulating the biology of several cell types, and characteristics of this pathway have delayed the identification of suitable targets and so, the development of such inhibitors that are only now reaching the clinic.Peer reviewe
Application guide for omics approaches to cell signaling
Research in signal transduction aims to identify the functions of different signaling pathways in physiological and pathological states. Traditional techniques using biochemical, genetic or cell biological approaches have made important contributions to our understanding of cellular signaling. However, the single-gene approach does not take into account the full complexity of cell signaling. With the availability of omics techniques, great progress has been made in understanding signaling networks. Omics approaches can be classified into two categories: 'molecular profiling', including genomic, proteomic, post-translational modification and interactome profiling; and 'molecular perturbation', including genetic and functional perturbations
Treatment-emergent adverse events after infusion of adherent stem cells: the MiSOT-I score for solid organ transplantation
BACKGROUND:
Cellular therapy after organ transplantation is emerging as an intriguing strategy to achieve dose reduction of classical immunosuppressive pharmacotherapy. Here, we introduce a new scoring system to assess treatment-emergent adverse events (TEAEs) of adherent stem cell therapies in the clinical setting of allogeneic liver transplantation (for example, the MiSOT-I trial Eudract CT: 2009-017795-25).
METHODS:
The score consists of three independent modalities (set of parameters) that focus on clinically relevant events early after intravenous or intraportal stem cell infusion: pulmonary toxicity, intraportal-infusional toxicity and systemic toxicity. For each modality, values between 0 (no TEAE) and 3 (severe TEAE) were defined. The score was validated retrospectively on a cohort of n=187 recipients of liver allografts not receiving investigational cell therapy between July 2004 and December 2010. These patients represent a control population for further trials. Score values were calculated for days 1, 4, and 10 after liver transplantation.
RESULTS:
Grade 3 events were most commonly related to the pulmonary system (3.5% of study cohort on day 4). Almost no systemic-related TEAEs were observed during the study period. The relative frequency of grade 3 events never exceeded 5% over all modalities and time points. A subgroup analysis for grade 3 patients provided no descriptors associated with severe TEAEs.
CONCLUSION:
The MiSOT-I score provides an assessment tool to score specific adverse events that may occur after adherent stem cell therapy in the clinical setting of organ transplantation and is thus a helpful tool to conduct a safety study
Deletion of the RNA-binding proteins ZFP36L1 and ZFP36L2 leads to perturbed thymic development and T lymphoblastic leukemia.
ZFP36L1 and ZFP36L2 are RNA-binding proteins (RBPs) that interact with AU-rich elements in the 3' untranslated region of mRNA, which leads to mRNA degradation and translational repression. Here we show that mice that lacked ZFP36L1 and ZFP36L2 during thymopoiesis developed a T cell acute lymphoblastic leukemia (T-ALL) dependent on the oncogenic transcription factor Notch1. Before the onset of T-ALL, thymic development was perturbed, with accumulation of cells that had passed through the beta-selection checkpoint without first expressing the T cell antigen receptor beta-chain (TCRbeta). Notch1 expression was higher in untransformed thymocytes in the absence of ZFP36L1 and ZFP36L2. Both RBPs interacted with evolutionarily conserved AU-rich elements in the 3' untranslated region of Notch1 and suppressed its expression. Our data establish a role for ZFP36L1 and ZFP36L2 during thymocyte development and in the prevention of malignant transformation
Stabilization of Dll1 mRNA by Elavl1/HuR in neuroepithelial cells undergoing mitosis
Delta/Notch-dependent lateral inhibition becomes enhanced in neuroepithelial cells undergoing mitosis. We report that the RNA-binding protein Elavl1/HuR localizes within the cytoplasm of these cells, interacts with the 3′-untranslated region of Dll1, and stabilizes transcripts containing this sequence, thus favoring Notch signaling