6 research outputs found

    Efficacy and safety of photodynamic therapy for non–muscle-invasive bladder cancer: a systematic review and meta-analysis

    Get PDF
    BackgroundPhotodynamic therapy (PDT) is a promising treatment for non-muscle-invasive bladder cancer (NMIBC), we conducted this systematic review to comprehensively assess its efficacy and safety.MethodsA comprehensive literature research was conducted using PubMed, Web of Science, and Scopus, and studies reporting the safety and efficacy of PDT in NMIBC were included. Complete response (CR) rates, recurrence-free survival (RFS) at different time points, and complication incidences were extracted and synthesized. Pooled results were presented as rates with a 95% confidence interval (95% CI).ResultsOverall, 28 single arm studies were included in the meta-analysis. For unresectable NMIBC, therapeutic PDT achieved CR in 68% (95% CI: 59%-77%) of patients. Among these CR cases, 71% (95% CI: 56%-85%) and 38% (95% CI: 12%-64%) have a RFS longer than 12 and 24 months, respectively. For Tis patients, the CR rate was 68% (95% CI: 56%-80%), and 84% (95% CI: 48%-100%) and 13% (95% CI: 1%-32%) have a RFS longer than 12 and 24 months. For patients with resectable tumors, post-resection adjuvant PDT could provide a 12 and 24 months RFS in 81% (95% CI:76%-87%) and 56% (95% CI:41%-71%) of them. Especially, for NMIBC patients who failed BCG therapy, adjuvant PDT could still achieve a 1-year and 2-year RFS in 68% (95% CI:51%-86%) and 56% (95% CI:32%-81%) patients. The complications were mostly mild and transient, including lower urinary tract symptoms and photosensitivity.ConclusionBoth therapeutic and adjuvant PDT present satisfying safety and efficacy for NMIBC, including these cases that are resistant to the standard of care. As a promising option for NMIBC, PDT deserves further exploration by future high-quality research.Systematic review registrationhttps://inplasy.com/inplasy-2022-11-0043/, INPLASY2022110043

    Identification of Long Non-Coding RNA MIR4435-2HG as a Prognostic Biomarker in Bladder Cancer

    No full text
    The abnormal expression of long non-coding RNAs(lncRNAs) is closely related to the prognosis of patients. This finding may indicate a new target for the treatment of malignant tumors. Non-muscle invasive bladder cancer (NMIBC) is the most common subtype of bladder cancer, and BCG intravesical therapy is the first-line treatment for NMIBC, but about half of NMIBC patients relapse within two years after BCG treatment. Therefore, it is necessary to screen out lncRNAs related to the prognosis and treatment of BGC-resistant patients. Here, we performed differential expression analysis of lncRNAs in the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets, and screened MIR4435-2HG as the only BCG-response-related lncRNA. Then, the prognosis value of MIR4435-2HG was validated in several publicly available cohorts, and confirmed its prognostic value in bladder cancer of different stages. In addition, we also analyzed its genetic alterations, clinical relevance, function enrichment, and association with other biomarkers. Further validation of the expression of MIR4435-2HG might be helpful to instruct NMIBC prognosis and treatment

    Circular RNAs and Drug Resistance in Genitourinary Cancers: A Literature Review

    No full text
    In recent years, systematic treatment has made great progress in genitourinary tumors. However, some patients develop resistance to the treatments, resulting in an increase in mortality. Circular RNAs (circRNAs) form a class of non-coding RNAs with high stability and significant clinical relevance. Accumulating evidence indicates that circRNAs play a vital role in cancer development and tumor chemotherapy resistance. This review summarizes the molecular and cellular mechanisms of drug resistance mediated by circRNAs to common drugs used in the treatment of genitourinary tumors. Several circRNAs were identified to regulate the responsiveness to systemic treatments in genitourinary tumors, including chemotherapies such as cisplatin and targeted therapies such as enzalutamide. Canonically, cicrRNAs participate in the competing endogenous RNA (ceRNA) network, or in some cases directly interact with proteins, regulate downstream pathways, and even some circRNAs have the potential to produce proteins or polypeptides. Several cellular mechanisms were involved in circRNA-dependent drug resistance, including autophagy, cancer stem cells, epithelial-mesenchymal transition, and exosomes. The potential clinical prospect of circRNAs in regulating tumor drug resistance was also discussed
    corecore