2 research outputs found

    An Unprecedented M–O Cluster Constructed from Nanosized {[C<sub>5</sub>NH<sub>5</sub>]<sub>9</sub>[H<sub>31</sub>Mo<sup>V</sup><sub>12</sub>O<sub>24</sub>Co<sup>II</sup><sub>12</sub>(PO<sub>4</sub>)<sub>23</sub>(H<sub>2</sub>O)<sub>4</sub>]}<sup>2–</sup> Anions Exhibiting Interesting Nonlinear-Optical Properties

    Full text link
    A novel high-nuclear nanosized cluster modified by conjugated organic ligands (pyridine and imidazole), [C<sub>5</sub>NH<sub>5</sub>]<sub>8</sub>­[C<sub>3</sub>H<sub>5</sub>N<sub>2</sub>]<sub>2</sub>­{[C<sub>5</sub>NH<sub>5</sub>]<sub>9</sub>​­[H<sub>31</sub>Mo<sub>12</sub>O<sub>24</sub>Co<sub>12</sub>​­(PO<sub>4</sub>)<sub>23</sub>­(H<sub>2</sub>O)<sub>4</sub>]}·12H<sub>2</sub>O (<b>1</b>), has been successfully isolated under hydrothermal conditions and structurally characterized. Compound <b>1</b> consists of 12 Co<sup>II</sup> and 12 Mo<sup>V</sup> ions linked by 23 {PO<sub>4</sub>} groups, exhibiting unprecedented nanosized ship-shaped clusters. The magnetic measurements reveal that compound <b>1</b> exhibits dominant antiferromagnetic interactions. Additionally, pyridine and imidazole ligands enhance the delocalized electron effects of clusters, and the third-order nonlinear-optical response of compound <b>1</b> is excellent

    l- and d‑[LnZn(IN)<sub>3</sub>(C<sub>2</sub>H<sub>4</sub>O<sub>2</sub>)]<sub><i>n</i></sub> (Ln = Eu, Sm, and Gd): Chiral Enantiomerically 3D 3d–4f Coordination Polymers Constructed by Interesting Butterfly-like Building Units and −[Ln-O-Zn]<sub><i>n</i></sub>– Helices

    Full text link
    A total of six three-dimensional chiral coordination compounds l- and d-[LnZn­(IN)<sub>3</sub>­(C<sub>2</sub>H<sub>4</sub>O<sub>2</sub>)]<sub><i>n</i></sub> (Ln = Eu, Sm, and Gd; HIN = isonicotinic acid) have been successfully synthesized under hydrothermal conditions without any chiral auxiliary and characterized by IR, TG, elemental analyses, and solid-state circular dichroism spectra. The structures of <b>1</b>–<b>6</b> were determined by single-crystal X-ray structural analysis, which shows that l-[LnZn­(IN)<sub>3</sub>­(C<sub>2</sub>H<sub>4</sub>O<sub>2</sub>)]<i><sub>n</sub></i> (Ln = Eu (<b>1</b>), Sm (<b>2</b>), and Gd (<b>3</b>)) crystallize in space group <i>P</i>6<sub>5</sub>22 and are levogyrate. The chiral frameworks of l-[LnZn­(IN)<sub>3</sub>(C<sub>2</sub>H<sub>4</sub>O<sub>2</sub>)]<sub><i>n</i></sub> are constructed from l-helical Ln-O-Zn cluster chains, while adjacent l-type helical −[Ln-O-Zn]<sub><i>n</i></sub>– chains are connected through IN<sup>–</sup> ligands. d-[LnZn­(IN)<sub>3</sub>­(C<sub>2</sub>H<sub>4</sub>O<sub>2</sub>)]<sub><i>n</i></sub> (Ln = Eu (<b>4</b>), Sm (<b>5</b>), and Gd (<b>6</b>)) crystallize in space group <i>P</i>6<sub>1</sub>22, and their chiral frameworks consist of d-helical Ln-O-Zn cluster chains. The observed second-harmonic generation efficiencies of [EuZn­(IN)<sub>3</sub>­(C<sub>2</sub>H<sub>4</sub>O<sub>2</sub>)]<sub><i>n</i></sub>, [SmZn­(IN)<sub>3</sub>­(C<sub>2</sub>H<sub>4</sub>O<sub>2</sub>)]<sub><i>n</i></sub>, and [GdZn­(IN)<sub>3</sub>­(C<sub>2</sub>H<sub>4</sub>O<sub>2</sub>)]<sub><i>n</i></sub> are 0.4, 0.3, and 0.3 times that of urea, respectively. We also studied luminescence spectra and luminescence lifetimes of <b>1</b> and <b>2</b>. The luminescence lifetimes of <b>1</b> and <b>2</b> are 1.18 ms, and 29.6 μs, respectively
    corecore