10,857 research outputs found

    Frequency response of space-based interferometric gravitational-wave detectors

    Get PDF
    Gravitational waves are perturbations of the metric of space-time. Six polarizations are possible, although general relativity predicts that only two such polarizations, tensor plus and tensor cross are present for gravitational waves. We give the analytical formulas for the antenna response functions for the six polarizations which are valid for any equal-arm interferometric gravitational-wave detectors without optical cavities in the arms.The response function averaged over the source direction and polarization angle decreases at high frequencies which deteriorates the signal-to-noise ratio registered in the detector. At high frequencies, the averaged response functions for the tensor and breathing modes fall of as 1/f21/f^2, the averaged response function for the longitudinal mode falls off as 1/f1/f and the averaged response function for the vector mode falls off as ln(f)/f2\ln(f)/f^2.Comment: V3: minor corrections. PRD in pres

    Passive fault-tolerant control for vehicle active suspension system based on H2/H∞ approach

    Get PDF
    In this paper, a robust passive fault-tolerant control (RPFTC) strategy based on H2/H∞ approach and an integral sliding mode passive fault tolerant control (ISMPFTC) strategy based on H2/H∞ approach for vehicle active suspension are presented with considering model uncertainties, loss of actuator effectiveness and time-domain hard constraints of the suspension system. H∞ performance index less than γ and H2 performance index is minimized as the design objective, avoid choosing weighting coefficient. The half-car model is taken as an example, the robust passive fault-tolerant controller and the integral sliding mode passive fault tolerant control law is designed respectively. Three different fault modes are selected. And then compare and analyze the control effect of vertical acceleration of the vehicle body and pitch angular acceleration of passive suspension control, robust passive fault tolerant control and integral sliding mode passive fault tolerant control to verify the feasibility and effectiveness of passive fault tolerant control algorithm of active suspension. The studies we have performed indicated that the passive fault tolerant control strategy of the active suspension can improve the ride comfort of the suspension system

    Gravitational waves from eccentric extreme mass-ratio inspirals as probes of scalar fields

    Full text link
    We study eccentric orbits of the Schwarzschild spacetime for extreme mass ratio system (EMRI) in modified gravity theories with additional scalar fields. Due to the additional energy and angular momentum carried away by the scalar field, the orbit of the EMRI in modified gravity decays faster than that in general relativity. The time that it takes the eccentricity ee to reach the minimum is smaller and the values of the semi-latus rectum pp and ee at the turning point when ee reaches the minimum are bigger for larger scalar charge dd. In addition to the calculation of energy fluxes with numerical method, we also use the Post-Newtonian expansion of the rate of energy carried away by the scalar field in eccentric orbits to understand the behaviors of the energy emission. By adding the scalar flux to the open code FastEMRIWaveforms of the Black Hole Perturbation Toolkit, we numerically generate fast gravitational waveforms for eccentric EMRIs with scalar fields and use the faithfulness between waveforms with and without the scalar charge to discuss the detection of scalar charge dd. The detection error of the scalar charge is also estimated with method of Fisher information matrix.Comment: 26 pages, 13 figures, 1 table; accepted for publication by JCA

    Dynamic analysis of offshore wind turbine blades under the action of wind shear and fluctuating wind

    Get PDF
    Aiming at large-scale offshore wind turbine blades, governing equations in fluid domain and motion equations in structural domain with geometric nonlinearity were built by the aid of ALE method. A three dimensional model under fluid-structure interaction (FSI) was established by using UG software and Geometry module, and numerical calculation for FSI vibration characteristics of wind turbine blades under the effects of wind shear and fluctuating wind was carried out based on ANSYS Workbench. The results indicate that the contribution of the combined action to displacement and Mises stress chiefly derives from the wind shear effect, which not only causes a comparatively larger increase for the maximum displacement and Mises stress, but also becomes bigger and bigger with the increase of average wind speed, and the fluctuating wind effect is insignificant. The maximum value of Mises stress in the blade section appears at the relative wingspan of 0.55, the maximum Mises stress varying with relative span length decreases progressively from the middle to both sides of the blade, and the contribution of wind shear effect alone, the combined action or wind speed increment to stress also shows the same change rule. Furthermore, in the maximum stress section along wingspan, Mises stress along the direction of blade thickness or chord length respectively presents two distribution laws, and reaches the maximum on the blade surface
    corecore