20,512 research outputs found
Lattice Gluon Propagator in the Landau Gauge: A Study Using Anisotropic Lattices
Lattice gluon propagators are studied using tadpole and Symanzik improved
gauge action in Landau gauge. The study is performed using anisotropic lattices
with asymmetric volumes. The Landau gauge dressing function for the gluon
propagator measured on the lattice is fitted according to a leading power
behavior: with an exponent at small
momenta. The gluon propagators are also fitted using other models and the
results are compared. Our result is compatible with a finite gluon propagator
at zero momentum in Landau gauge.Comment: 14 pages, 4 figure
Improved cosmological constraints on the curvature and equation of state of dark energy
We apply the Constitution compilation of 397 supernova Ia, the baryon
acoustic oscillation measurements including the parameter, the distance
ratio and the radial data, the five-year Wilkinson microwave anisotropy probe
and the Hubble parameter data to study the geometry of the universe and the
property of dark energy by using the popular Chevallier-Polarski-Linder and
Jassal-Bagla-Padmanabhan parameterizations. We compare the simple
method of joined contour estimation and the Monte Carlo Markov chain method,
and find that it is necessary to make the marginalized analysis on the error
estimation. The probabilities of and in the
Chevallier-Polarski-Linder model are skew distributions, and the marginalized
errors are ,
, , and
. For the Jassal-Bagla-Padmanabhan model, the
marginalized errors are ,
, , and
. The equation of state parameter of dark energy
is negative in the redshift range at more than level.
The flat CDM model is consistent with the current observational data
at the level.Comment: 10 figures, 12 pages, Classical and Quantum Gravity in press; v2 to
match the pulished versio
Effective generation of Ising interaction and cluster states in coupled microcavities
We propose a scheme for realizing the Ising spin-spin interaction and atomic
cluster states utilizing trapped atoms in coupled microcavities. It is shown
that the atoms can interact with each other via the exchange of virtual photons
of the cavities. Through suitably tuning the parameters, an effective Ising
spin-spin interaction can be generated in this optical system, which is used to
produce the cluster states. This scheme does not need the preparation of
initial states of atoms and cavity modes, and is insensitive to cavity decay.Comment: 11pages, 2 figures, Revtex
Energy Spectra of Anti-nucleons in Finite Nuclei
The quantum vacuum in a many-body system of finite nuclei has been
investigated within the relativistic Hartree approach which describes the bound
states of nucleons and anti-nucleons consistently. The contributions of the
Dirac sea to the source terms of the meson-field equations are taken into
account up to the one-nucleon loop and one-meson loop. The tensor couplings for
the - and -meson are included in the model. The overall nucleon
spectra of shell-model states are in agreement with the data. The calculated
anti-nucleon spectra in the vacuum differ about 20 -- 30 MeV with and without
the tensor-coupling effects.Comment: 4 pages, to appear in the Proceedings of MENU 2004 (Beijing, Aug. 29
-- Sept. 4, 2004
- …