23,703 research outputs found

    Ideal switching effect in periodic spin-orbit coupling structures

    Full text link
    An ideal switching effect is discovered in a semiconductor nanowire with a spatially-periodic Rashba structure. Bistable `ON' and `OFF' states can be realized by tuning the gate voltage applied on the Rashba regions. The energy range and position of `OFF' states can be manipulated effectively by varying the strength of the spin-orbit coupling (SOC) and the unit length of the periodic structure, respectively. The switching effect of the nanowire is found to be tolerant of small random fluctuations of SOC strength in the periodic structure. This ideal switching effect might be applicable in future spintronic devices.Comment: 4 pages and 4 figure

    Cosmological Dynamics of a Dirac-Born-Infeld field

    Full text link
    We analyze the dynamics of a Dirac-Born-Infeld (DBI) field in a cosmological set-up which includes a perfect fluid. Introducing convenient dynamical variables, we show the evolution equations form an autonomous system when the potential and the brane tension of the DBI field are arbitrary power-law or exponential functions of the DBI field. In particular we find scaling solutions can exist when powers of the field in the potential and warp-factor satisfy specific relations. A new class of fixed-point solutions are obtained corresponding to points which initially appear singular in the evolution equations, but on closer inspection are actually well defined. In all cases, we perform a phase-space analysis and obtain the late-time attractor structure of the system. Of particular note when considering cosmological perturbations in DBI inflation is a fixed-point solution where the Lorentz factor is a finite large constant and the equation of state parameter of the DBI field is w=−1w=-1. Since in this case the speed of sound csc_s becomes constant, the solution can be thought to serve as a good background to perturb about.Comment: 24 pages, 7 figures, minor corrections, references adde

    Learning the Roots of Visual Domain Shift

    Get PDF
    In this paper we focus on the spatial nature of visual domain shift, attempting to learn where domain adaptation originates in each given image of the source and target set. We borrow concepts and techniques from the CNN visualization literature, and learn domainnes maps able to localize the degree of domain specificity in images. We derive from these maps features related to different domainnes levels, and we show that by considering them as a preprocessing step for a domain adaptation algorithm, the final classification performance is strongly improved. Combined with the whole image representation, these features provide state of the art results on the Office dataset.Comment: Extended Abstrac

    Improved cosmological constraints on the curvature and equation of state of dark energy

    Full text link
    We apply the Constitution compilation of 397 supernova Ia, the baryon acoustic oscillation measurements including the AA parameter, the distance ratio and the radial data, the five-year Wilkinson microwave anisotropy probe and the Hubble parameter data to study the geometry of the universe and the property of dark energy by using the popular Chevallier-Polarski-Linder and Jassal-Bagla-Padmanabhan parameterizations. We compare the simple χ2\chi^2 method of joined contour estimation and the Monte Carlo Markov chain method, and find that it is necessary to make the marginalized analysis on the error estimation. The probabilities of Ωk\Omega_k and waw_a in the Chevallier-Polarski-Linder model are skew distributions, and the marginalized 1σ1\sigma errors are Ωm=0.279−0.008+0.015\Omega_m=0.279^{+0.015}_{-0.008}, Ωk=0.005−0.011+0.006\Omega_k=0.005^{+0.006}_{-0.011}, w0=−1.05−0.06+0.23w_0=-1.05^{+0.23}_{-0.06}, and wa=0.5−1.5+0.3w_a=0.5^{+0.3}_{-1.5}. For the Jassal-Bagla-Padmanabhan model, the marginalized 1σ1\sigma errors are Ωm=0.281−0.01+0.015\Omega_m=0.281^{+0.015}_{-0.01}, Ωk=0.000−0.006+0.007\Omega_k=0.000^{+0.007}_{-0.006}, w0=−0.96−0.18+0.25w_0=-0.96^{+0.25}_{-0.18}, and wa=−0.6−1.6+1.9w_a=-0.6^{+1.9}_{-1.6}. The equation of state parameter w(z)w(z) of dark energy is negative in the redshift range 0≤z≤20\le z\le 2 at more than 3σ3\sigma level. The flat Λ\LambdaCDM model is consistent with the current observational data at the 1σ1\sigma level.Comment: 10 figures, 12 pages, Classical and Quantum Gravity in press; v2 to match the pulished versio

    Dynamics of a scalar field in Robertson-Walker spacetimes

    Full text link
    We analyze the dynamics of a single scalar field in Friedmann-Robertson-Walker universes with spatial curvature. We obtain the fixed point solutions which are shown to be late time attractors. In particular, we determine the corresponding scalar field potentials which correspond to these stable solutions. The analysis is quite general and incorporates expanding and contracting universes with both positive and negative scalar potentials. We demonstrate that the known power law, exponential, and de-Sitter solutions are certain limits of our general set of solutions.Comment: 10 pages, v2:references added. Accepted for publication in PR

    Sustainability of multi-field inflation and bound on string scale

    Full text link
    We study the effects of the interaction terms between the inflaton fields on the inflationary dynamics in multi-field models. With power law type potential and interactions, the total number of e-folds may get considerably reduced and can lead to unacceptably short period of inflation. Also we point out that this can place a bound on the characteristic scale of the underlying theory such as string theory. Using a simple multi-field chaotic inflation model from string theory, the string scale is constrained to be larger than the scale of grand unified theory.Comment: (v1) 9 pages, 1 figure;(v2) 10 pages, references added; (v3) 15 pages, 4 figures, more discussions about parameters and observable quantities, references added, to appear in Modern Physics Letters

    Study of an opposed jet turbulent flame using the sub-grid PDF method

    Get PDF
    Turbulent premixed flames generated by a counter-flow burner are studied numerically using Large Eddy Simulation (LES). A transported probability density function (pdf ) approach is adopted to simulate sub-grid scale (sgs) turbulence-chemistry interaction. A solution to the joint sgs-pdf evolution equation of the scalars is obtained by the Eulerian stochastic field method. The chemistry is represented by means of a simplified chemical reaction mechanism containing 15 reaction steps and 19 species, and the subgrid scale stresses and scalar fluxes are modelled by a dynamic Smagorinsky model and a gradient type model respectively. This work investigates the the effect of the interaction of turbulent flames and combustion product on the premixed counter-flow flame in terms of the probability of localised extinction. The simulations show good agreement with the experimental measurements in terms of velocity fields in both absolute and relative frames, and the local progress variable which reflects the probability of finding the fresh combustion product are reasonably reproduced using 8 stochastic fields. Overall, the results serve to demonstrate the capability of the LES-pdf method in the study of the premixed opposed jet turbulent flame

    Cross-dimensional Weighting for Aggregated Deep Convolutional Features

    Full text link
    We propose a simple and straightforward way of creating powerful image representations via cross-dimensional weighting and aggregation of deep convolutional neural network layer outputs. We first present a generalized framework that encompasses a broad family of approaches and includes cross-dimensional pooling and weighting steps. We then propose specific non-parametric schemes for both spatial- and channel-wise weighting that boost the effect of highly active spatial responses and at the same time regulate burstiness effects. We experiment on different public datasets for image search and show that our approach outperforms the current state-of-the-art for approaches based on pre-trained networks. We also provide an easy-to-use, open source implementation that reproduces our results.Comment: Accepted for publications at the 4th Workshop on Web-scale Vision and Social Media (VSM), ECCV 201
    • …
    corecore