23 research outputs found

    Towards Target-Driven Visual Navigation in Indoor Scenes via Generative Imitation Learning

    Full text link
    We present a target-driven navigation system to improve mapless visual navigation in indoor scenes. Our method takes a multi-view observation of a robot and a target as inputs at each time step to provide a sequence of actions that move the robot to the target without relying on odometry or GPS at runtime. The system is learned by optimizing a combinational objective encompassing three key designs. First, we propose that an agent conceives the next observation before making an action decision. This is achieved by learning a variational generative module from expert demonstrations. We then propose predicting static collision in advance, as an auxiliary task to improve safety during navigation. Moreover, to alleviate the training data imbalance problem of termination action prediction, we also introduce a target checking module to differentiate from augmenting navigation policy with a termination action. The three proposed designs all contribute to the improved training data efficiency, static collision avoidance, and navigation generalization performance, resulting in a novel target-driven mapless navigation system. Through experiments on a TurtleBot, we provide evidence that our model can be integrated into a robotic system and navigate in the real world. Videos and models can be found in the supplementary material.Comment: 11 pages, accepted by IEEE Robotics and Automation Letter

    Reinforcement Learning-based Visual Navigation with Information-Theoretic Regularization

    Full text link
    To enhance the cross-target and cross-scene generalization of target-driven visual navigation based on deep reinforcement learning (RL), we introduce an information-theoretic regularization term into the RL objective. The regularization maximizes the mutual information between navigation actions and visual observation transforms of an agent, thus promoting more informed navigation decisions. This way, the agent models the action-observation dynamics by learning a variational generative model. Based on the model, the agent generates (imagines) the next observation from its current observation and navigation target. This way, the agent learns to understand the causality between navigation actions and the changes in its observations, which allows the agent to predict the next action for navigation by comparing the current and the imagined next observations. Cross-target and cross-scene evaluations on the AI2-THOR framework show that our method attains at least a 10%10\% improvement of average success rate over some state-of-the-art models. We further evaluate our model in two real-world settings: navigation in unseen indoor scenes from a discrete Active Vision Dataset (AVD) and continuous real-world environments with a TurtleBot.We demonstrate that our navigation model is able to successfully achieve navigation tasks in these scenarios. Videos and models can be found in the supplementary material.Comment: 11 pages, corresponding author: Kai Xu ([email protected]) and Jun Wang ([email protected]

    Differentially Expressed MicroRNAs in the Development of Early Diabetic Retinopathy

    No full text
    The pathological mechanisms of diabetic retinopathy (DR), a leading cause of blindness in adults with diabetes mellitus, remain incompletely understood. Because microRNAs (miRNAs) represent effective DR therapeutic targets, we identified aberrantly expressed miRNAs associated with cellular dysfunction in early DR and detected their potential targets. We exposed human retinal endothelial cells (HRECs) and a cell line of retinal pigment epithelial (RPE) cells to high glucose (25 mmol/L, 1–7 days) to mimic DR progression and used streptozotocin-injected rats (4–8 weeks) for an in vivo diabetes model. HREC/RPE viability decreased after 24 h incubation and diminished further over 6 days, and Hoechst staining revealed hyperglycemia-induced HREC/RPE apoptosis. Although miR-124/-125b expression decreased with DR progression in vitro and in vivo, miR-135b/-199a levels decreased in retinal cells under hyperglycemia exposure, but increased in diabetic retinas. Moreover, miR-145/-146a expression decreased gradually in high-glucose-treated HRECs, but increased in hyperglycemia-exposed RPE cells and in diabetic rats. Our findings suggested that aberrant miRNA expression could be involved in hyperglycemia-induced retinal-cell dysfunction, and the identified miRNAs might vary in different retinal layers, with expression changes associated with DR development. Therefore, miRNA modulation and the targeting of miRNA effects on transcription factors could represent novel and effective DR-treatment strategies

    An Accurate, Robust Visual Odometry and Detail-preserving Reconstruction System

    No full text

    Intraocular Foreign Bodies: Clinical Characteristics and Prognostic Factors Influencing Visual Outcome and Globe Survival in 373 Eyes

    No full text
    Aim. To describe epidemiologic and clinical characteristics and prognostic factors influencing visual outcome after intraocular foreign bodies (IOFBs) injury. Methods. Medical records of 370 patients (373 eyes) with IOFBs were reviewed to identify the factors influencing visual acuity by univariate and multivariate analyses. Results. The majority of patients (97.0%) were men, with a mean age of 38.1 years. The most common cause of ocular injury was hammering (52.6%); magnetic IOFBs occurred in 84.7% of these cases. Factors associated with poor visual outcome (defined as <1.3 logMAR) included the following: age ≥50 years (P=0.046); worse presenting visual acuity (P<0.001); complications of retinal breaks (P=0.006) and endophthalmitis (P=0.032); vitrectomy (P=0.035); and intraocular C3F8 gas tamponade (P=0.038). Excellent visual outcome (defined as ≥0.5 logMAR) was associated with age <50 years (P=0.003); better presenting visual acuity (PVA) (P<0.001); wound length <4 mm (P=0.005); absence of vitreous hemorrhage (P=0.026) and retinal breaks (P<0.001); nonvitrectomy surgery (P=0.043); and use of balanced saline (P=0.029). Conclusions. Multiple prognostic factors were identified that may predict visual outcome and globe survival after IOFBs injury. Age, initial presenting visual acuity, wound length, complications (vitreous hemorrhage, retinal breaks, and endophthalmitis), surgical approach, and intraocular tamponade were significant predictors of visual outcome

    Regression-Based Three-Dimensional Pose Estimation for Texture-Less Objects

    No full text

    Separation of Alkyne Enantiomers by Chiral Column HPLC Analysis of Their Cobalt-Complexes

    No full text
    Separation of the enantiomers of new chiral alkynes in strategic syntheses and bioorthogonal studies is always problematic. The chiral column high-performance liquid chromatography (HPLC) method in general could not be directly used to resolve such substrates, since the differentiation of the alkyne segment with the other alkane/alkene segment is not significant in the stationary phase, and the alkyne group is not a good UV chromophore. Usually, a pre-column derivatization reaction with a tedious workup procedure is needed. Making use of easily-prepared stable alkyne-cobalt-complexes, we developed a simple and general method by analyzing the in situ generated cobalt-complex of chiral alkynes using chiral column HPLC. This new method is especially suitable for the alkynes without chromophores and other derivable groups

    Biomimetic nanozyme-decorated hydrogels with Hâ‚‚Oâ‚‚-activated oxygenation for modulating immune microenvironment in diabetic wound

    No full text
    Diabetic foot ulcers (DFUs) remain a devastating threat to human health. While hydrogels are promising systems for DFU-based wound management, their effectiveness is often hindered by the immune response and hostile wound microenvironment associated with the uncontrollable accumulation of reactive oxygen species and hypoxia. Here, we develop a therapeutic wound dressing using a biomimetic hydrogel system with the decoration of catalase-mimic nanozyme, namely, MnCoO@PDA/CPH. The hydrogel can be designed to match the mechanical and electrical cues of skins simultaneously with H2O2-activated oxygenation ability. As a proof of concept, DFU-based rat models are created to validate the therapeutic efficacy of the MnCoO@PDA/CPH hydrogel in vivo. The results indicate that the developed hydrogel can promote DFU healing and improve the quality of the healed wound as featured by alleviated proinflammatory, increased re-epithelialization, highly ordered collagen deposition, and functional blood vessel growth.Ministry of Education (MOE)National Research Foundation (NRF)This research work was supported by the National Natural Science Foundation of China (Grant 22105131), the Guangdong Basic and Applied Basic Research Foundation (Grant 2022A1515011677), the International Postdoctoral Exchange Fellowship Program (Grant PC2021046), the National Research Foundation Singapore under Its Competitive Research Programme (Grant NRF-CRP26-2021-0002), and the Ministry of Education Singapore under the Research Centres of Excellence Scheme (Institute for Digital Molecular Analytics and Science)
    corecore