17 research outputs found

    Promoting blockchain technology in low-carbon management to achieve firm performance from a socio-economic perspective: empirical evidence from China

    No full text
    Blockchain technology is a disruptive innovation that can accelerate carbon neutrality while maintaining business growth. However, its full potential has yet to be fully understood due to the complexity of its technical and socio-environmental characteristics. Drawing on socio-technical theory, this study aims to explore the main antecedents and their influencing mechanisms on blockchain-based low-carbon emission management, as well as investigate whether reducing carbon emissions leads to improved firm performance. Using data from 395 online respondents recruited from Chinese companies, the results of PLS-SEM indicate that cost-benefit efficiency, socio-environmental competitive pressure, and environmental legitimacy positively influence both the basic and auxiliary adoption of blockchain in low-carbon emission management. Additionally, relative advantage and regulatory policy partially influence the adoption of blockchain, while technology readiness has no significant effect on either basic or auxiliary adoption. Furthermore, both the basic and auxiliary adoption of blockchain contribute to carbon emission reduction and improve firm performance (i.e., operational, economic, and social performance). The findings of this study will contribute to the growing literature and managerial practice regarding blockchain technology and carbon neutrality.</p

    Effect of the Angle between Hydraulic Fracture and Natural Fracture on Shale Gas Seepage

    No full text
    Fracturing technology is an effective measure to exploit shale gas and the fractures improve the seepage ability of shale reservoir after fracturing. In this paper, taking Chang 7 of Yanchang Formation as the study area, a double porosity seepage model considering natural fracture was established and it was solved by finite element method of COMSOL5.5; then, shale gas seepage was analyzed under different angles between hydraulic fracture and natural fracture finally. Meanwhile, angles between hydraulic fracture and natural fracture were optimized by analyzing both the reservoir pressure distribution and bottom hole flowing pressure. Also, a permeability experiment with liquid was conducted to verify the accuracy of the numerical simulation result. Both numerical simulation and permeability measurement experiment get a uniform result that the optimal angle between hydraulic fracture and natural fracture is 90°. Permeability is the highest, shale gas seepage rate is the fastest, bottom hole flowing pressure is the highest, and also it is beneficial to the desorption of adsorbed gas in the matrix system and then effectively supplements reservoir pressure and bottom hole flowing pressure. The research results will provide some theoretical guidance for fracturing design

    Analysis of Coal Swelling Deformation Caused by Carbon Dioxide Adsorption Based on X-Ray Computed Tomography

    No full text
    The geologic sequestration of carbon dioxide by coal beds leads to the swelling deformation of coal. In order to investigate the swelling deformation characteristics at the microscopic scale, X-ray computed tomography (CT) scanning technology was used. X-ray CT scanning technology detects the internal structure, deformation, and porosity of coal at different gas pressures. Results show that swelling deformation is nonuniform, which is caused by the heterogeneity of the coal structure. Through quantitative measurement of the distance between fractures and pseudocolor processing of CT images, we observed that fractures gradually close with the increase of adsorption pressure. As adsorption pressure increases, the porosity of coal decreases, and the density of coal increases

    PassTCN-PPLL: A Password Guessing Model Based on Probability Label Learning and Temporal Convolutional Neural Network

    No full text
    The frequent incidents of password leakage have increased people’s attention and research on password security. Password guessing is an essential part of password cracking and password security research. The progression of deep learning technology provides a promising way to improve the efficiency of password guessing. However, the mainstream models proposed for password guessing, such as RNN (or other variants, such as LSTM, GRU), GAN and VAE still face some problems, such as the low efficiency and high repetition rate of the generated passwords. In this paper, we propose a password-guessing model based on the temporal convolutional neural network (PassTCN). To further improve the performance of the generated passwords, we propose a novel password probability label-learning method, which reconstructs labels based on the password probability distribution of the training set and deduplicates the training set when training. Experiments on the RockYou dataset showed that, when generating 108 passwords, the coverage rate of PassTCN with password probability label learning (PassTCN-PPLL) reached 12.6%, which is 87.2%, 72.6% and 42.9% higher than PassGAN (a password-guessing model based on GAN), VAEPass (a password-guessing model based on VAE) and FLA (a password-guessing model based on LSTM), respectively. The repetition rate of our model is 25.9%, which is 45.1%, 31.7% and 17.4% lower than that of PassGAN, VAEPass and FLA, respectively. The results confirm that our approach not only improves the coverage rate but also reduces the repetition rate

    Research on the cooperative network game model of marine plastic waste management

    No full text
    Marine plastic waste pollution damages the stability of the marine ecosystem and inhibits the sustainable development of the "blue economy", which has aroused widespread concern worldwide. Nowadays, cooperation on marine plastic waste management is an urgent research topic. A global consensus on management cooperation is emerging, but the economic feasibility of cooperation has not yet to be proven. This paper takes the amount of capital investment, technology level of governance and the amount of marine plastic waste to be treated as variables affecting the cooperative income to construct a cooperative network game model for marine plastic waste management from the perspective of economics. The paper distributes benefits based on the "Myerson value", analyzes the equilibrium conditions of the model and tests the stability of cooperation. In addition, numerical analysis is carried out using actual data from key countries to demonstrate the practical economic feasibility of cooperation in marine plastic waste management. The findings include: (1) The technology level of governance and the amount of marine plastic waste to be treated have a negative impact on the country's choice of cooperative governance strategies and the stability of cooperative alliance, while the amount of capital investment is conductive to it. (2) The size of the alliance has an impact on country's strategic choices and the stability of the alliances. Too small an alliance is not conducive to cooperative alliance building, which gradually becomes more likely as the size of the alliance increases, but it is uncertain the effect of oversized alliance and what size is most appropriate. (3) Cooperation in marine plastic waste management is economically feasible at both the theoretical and practical levels. (4) Encouraging technological innovation to improve the governance level, implementing extended producer responsibility measures to shift the management cost, exerting the positive influence of key countries to promote the stability of the alliance, and establishing a reasonable interest adjustment mechanism to coordinate the interests of all parties are helpful to build a stable and efficient cooperation alliance and improve the economic feasibility of marine plastic waste management cooperation. This paper not only provides theoretical support for the global cooperation of marine plastic waste management, but also proves the feasibility of practice and points out the direction for its practice.</p

    Experimental Study on the Distribution and Height of Spontaneous Imbibition Water of Chang 7 Continental Shale Oil

    No full text
    After multi-stage volume hydraulic fracturing in a shale oil reservoir, massive amounts of water can be imbibed into the matrix pores. One of the key imbibition characteristics of a shale reservoir is the imbibition water and its height distribution. Based on high pressure mercury injection (HPMI) experiments and nuclear magnetic resonance (NMR) analyses, this study quantitatively evaluated the pore-size distribution of Chang 7 continental shale oil reservoirs in Yanchang Formation, Ordos Basin. The pores could be divided into three types as micropores (≤0.1 μm), mesopores (0.1–1.0 μm), and macropores (>1.0 μm), while the volume of micropores and mesopores accounted for more than 90%. This demonstrated that there were strong heterogeneity and micro–nano characteristics. According to the spontaneous imbibition (SI) experiments, the cumulative proportion of imbibition water content was the largest in micropores, exceeding 43%, followed by mesopores around 30%, and that of macropores was the lowest, and basically less than 20%. The negative values of stage water content in the macropore or mesopore indicated that these pores became a water supply channel for other dominant imbibition pores. Additionally, combining the fractal theory with the NMR T2 spectrum, the relative imbibition water and actual height were calculated in different pores, while the height distribution varied with cores and shale oil. The shorter the core, the higher was the relative height, while the radius of macropores filled with imbibition water was reduced. This indicates that the height distribution was affected by the pore structure, oil viscosity, and core length

    Numerical Simulation on Radial Well Deflagration Fracturing Based on Phase Field Method

    No full text
    A radial well has a unique wellbore configuration. Fracture propagation in radial well deflagration fracturing is studied rarely. The mechanism of interaction between deflagration fractures, natural fractures, and micro-fractures is still unknown. Based on continuum mechanics, damage mechanics, and variational principles, a numerical model of fracture propagation in deflagration fracturing is established with the Hamilton principle and phase-field fracture theory. The effects of horizontal principal stress difference, natural fracture distribution, and micro-fractures around the wellbore on fracture propagation in deflagration fracturing are studied. First, when no natural fractures are developed around the radial well, fractures are initiated at both ends of the radial well. Second, when there are three natural fractures around the radial well, the created fractures have the morphology of shorter fractures in the middle and longer fractures on both sides under stress interference mechanisms. Third, a larger density of natural fractures causes obvious stress superposition, changes the initiation points of radial wells and fracture morphology, and increases fracture width and reservoir stimulation volume. Fourth, as the micro-fractures increase, their interference and induction effects on deflagration fractures are enhanced gradually, and the deflection angle of fractures increases by 38.7%. The study provides a reference for optimizing deflagration fracturing in a radial well

    The pain regulation of endokinin A/B or endokinin C/D on chimeric peptide MCRT in mice

    No full text
    The present study focused on the interactive pain regulation of endokinin A/B (EKA/B, the common C-terminal decapeptide in EKA and EKB) or endokinin C/D (EKC/D, the common C-terminal duodecapeptide in EKC and EKD) on chimeric peptide MCRT (YPFPFRTic-NH2, based on YPFP-NH2 and PFRTic-NH2) at supraspinal level in mice. Results demonstrated that the co-injection of nanomolar EKA/B and MCRT showed moderate regulation, while 30 pmol EKA/B had no effect on MCRT. The combination of EKC/D and MCRT produced enhancive antinociception, which was nearly equal to the sum of mathematical value of single EKC/D and MCRT. Mechanism studies revealed that pre-injected naloxone attenuated the combination significantly with the equivalent analgesic effects of EKC/D alone, suggesting that EKC/D and MCRT might act on two totally independent pathways. Moreover, based on the above results and previous reports, we made two reasonable hypotheses to explain the cocktail-induced analgesia, which potentially pave the way to explore the respective regulatory mechanisms of EKA/B, EKC/D and MCRT and better understand the complicated pain regulation of NK1 and Îź opioid receptors, as follows: (1) MCRT and endomorphin-1 possibly activated different Îź subtypes; (2) Picomolar EKA/B might motivate the endogenous NPFF system after NK1 activation.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Numerical Simulations of Radial Well Assisted Deflagration Fracturing Based on the Smoothed Particle Hydrodynamics Method

    No full text
    The technology of radial-well-assisted hydraulic fracturing is applied in the stimulation of low-permeability hydrocarbon reservoirs where commercial production cannot be achieved by the conventional fracturing method. Here, a study on the reservoir stimulation effect and the fracture propagation pattern of radial-well-assisted deflagration fracturing was carried out. Based on smooth particle hydrodynamics (SPH), rock mechanics theory, and finite element theory, a numerical model of radial-well-assisted deflagration fracturing was established by integrating the JWL state equation. Research on the effects of the deflagration position, radial well azimuth and horizontal principal stress difference on the fracture propagation was carried out. The results show that the deflagration position, radial well azimuth and horizontal principal stress difference have significant effects on the fracture area in deflagration fracturing. The closer distance from the deflagration position is, the larger the radial well azimuth and the smaller the horizontal stress difference are, leading to a larger fracture area, which is conducive to reservoir stimulation. During fracturing, both shear fractures and tensile fractures are formed. The formation and conversion of shear fractures and tensile fractures are related to the deflagration position, radial well azimuth, horizontal principal stress difference, etc
    corecore