6 research outputs found

    Secure Secondary Authentication Framework for Efficient Mutual Authentication on a 5G Data Network

    No full text
    The service-based architecture of the Fifth Generation(5G) had combined the services and security architectures and enhanced the authentication process of services to expand the coverage of the network, including heterogeneous devices. This architecture uses the secondary authentication for mutual authentication between the User Equipment (UE) and the Data Network (DN) to authenticate devices and services. However, this authentication mechanism can cause a signaling storm in the Non-Access Stratum (NAS) because the end node needs to communicate with the authentication server of the NAS area. This problem could affect the availability of the network when the network is extended. This research proposes a mutual authentication framework that can efficiently perform a mutual authentication process through secondary authentication between UE and DN. The proposed framework uses newly devised network functions: Secondary Authentication Function (SAF) and the Authentication Data Management Function (ADMF). This framework proposes a methodology at the protocol level for efficient mutual authentication using the mobile edge computing architecture. We analyzed the proposed framework in the point of security considerations, and we evaluated the effect of the framework on the traffic of the NAS layer and user experience. Our simulation results show that the proposed framework can reduce the NAS traffic by 39% and total traffic of the overall network by 10%

    A Case for Hardware-Based Demand Paging

    No full text
    © 2020 IEEE.The virtual memory system is pervasive in today's computer systems, and demand paging is the key enabling mechanism for it. At a page miss, the CPU raises an exception, and the page fault handler is responsible for fetching the requested page from the disk. The OS typically performs a context switch to run other threads as traditional disk access is slow. However, with the widespread adoption of high-performance storage devices, such as low-latency solid-state drives (SSDs), the traditional OS-based demand paging is no longer effective because a considerable portion of the demand paging latency is now spent inside the OS kernel. Thus, this paper makes a case for hardware-based demand paging that mostly eliminates OS involvement in page miss handling to provide a near-disk-access-time latency for demand paging. To this end, two architectural extensions are proposed: LBA-augmented page table that moves I/O stack operations to the control plane and Storage Management Unit that enables CPU to directly issue I/O commands without OS intervention in most cases. OS support is also proposed to detach tasks for memory resource management from the critical path. The evaluation results using both a cycle-level simulator and a real x86 machine with an ultra-low latency SSD show that the proposed scheme reduces the demand paging latency by 37.0%, and hence improves the performance of FIO read random benchmark by up to 57.1% and a NoSQL server by up to 27.3% with real-world workloads. As a side effect of eliminating OS intervention, the IPC of the user-level code is also increased by up to 7.0%.N

    Plasma Proteome Signature to Predict the Outcome of Breast Cancer Patients Receiving Neoadjuvant Chemotherapy

    No full text
    The plasma proteome of 51 non-metastatic breast cancer patients receiving neoadjuvant chemotherapy (NCT) was prospectively analyzed by high-resolution mass spectrometry coupled with nano-flow liquid chromatography using blood drawn at the time of diagnosis. Plasma proteins were identified as potential biomarkers, and their correlation with clinicopathological variables and survival outcomes was analyzed. Of 51 patients, 20 (39.2%) were HR+/HER2-, five (9.8%) were HR+/HER2+, five (9.8%) were HER2+, and 21 (41.2%) were triple-negative subtype. During a median follow-up of 52.0 months, there were 15 relapses (29.4%) and eight deaths (15.7%). Four potential biomarkers were identified among differentially expressed proteins: APOC3 had higher plasma concentrations in the pathological complete response (pCR) group, whereas MBL2, ENG, and P4HB were higher in the non-pCR group. Proteins statistically significantly associated with survival and capable of differentiating low- and high-risk groups were MBL2 and P4HB for disease-free survival, P4HB for overall survival, and MBL2 for distant metastasis-free survival (DMFS). In the multivariate analysis, only MBL2 was a consistent risk factor for DMFS (HR: 9.65, 95% CI 2.10–44.31). The results demonstrate that the proteomes from non-invasive sampling correlate with pCR and survival in breast cancer patients receiving NCT. Further investigation may clarify the role of these proteins in predicting prognosis and thus their therapeutic potential for the prevention of recurrence
    corecore