23 research outputs found

    Passive detection of moving aerial target based on multiple collaborative GPS satellites

    Get PDF
    Passive localization is an important part of intelligent surveillance in security and emergency applications. Nowadays, Global Navigation Satellite Systems (GNSSs) have been widely deployed. As a result, the satellite signal receiver may receive multiple GPS signals simultaneously, incurring echo signal detection failure. Therefore, in this paper, a passive method leveraging signals from multiple GPS satellites is proposed for moving aerial target detection. In passive detection, the first challenge is the interference caused by multiple GPS signals transmitted upon the same spectrum resources. To address this issue, successive interference cancellation (SIC) is utilized to separate and reconstruct multiple GPS signals on the reference channel. Moreover, on the monitoring channel, direct wave and multi-path interference are eliminated by extensive cancellation algorithm (ECA). After interference from multiple GPS signals is suppressed, the cycle cross ambiguity function (CCAF) of the signal on the monitoring channel is calculated and coordinate transformation method is adopted to map multiple groups of different time delay-Doppler spectrum into the distance−velocity spectrum. The detection statistics are calculated by the superposition of multiple groups of distance-velocity spectrum. Finally, the echo signal is detected based on a properly defined adaptive detection threshold. Simulation results demonstrate the effectiveness of our proposed method. They show that the detection probability of our proposed method can reach 99%, when the echo signal signal-to-noise ratio (SNR) is only −64 dB. Moreover, our proposed method can achieve 5 dB improvement over the detection method using a single GPS satellite

    Modulation parameter estimation of LFM interference for direct sequence spread spectrum communication system in alpha-stable noise

    Get PDF
    The linear frequency modulation (LFM) interference is one of the typical broadband interferences in direct sequence spread spectrum (DSSS) communication system. In this article, a novel modulation parameter estimation method of LFM interference is proposed for the DSSS communication system in alpha-stable noise. To accurately estimate the modulation parameters, the alpha-stable noise should be eliminated first. Thus, we formulate a new generalized extended linear chirplet transform to suppress the alpha-stable noise, for a robust time-frequency, transformation of LFM interference is realized. Then, using the Radon transform, the maximum value after transformation and the chirp rate according to the angle related to the maximum value are estimated. In addition, a generalized Fourier transform is introduced to estimate the initial frequency of the LFM interference. For the performance analysis, the Cramér-Rao lower bounds of the estimated chirp rate and the initial frequency of the LFM interference in the presence of alpha-stable noise are derived. Moreover, the asymptotic properties of the modulation parameter estimator are analyzed. Simulation results demonstrate that the performance of the proposed parameter estimation method significantly outperforms existing methods, especially in a low SNR regime

    Signal estimation in cognitive satellite networks for satellite-based industrial internet of things

    Get PDF
    Satellite industrial Internet of Things (IIoT) plays an important role in industrial manufactures without requiring the support of terrestrial infrastructures. However, due to the scarcity of spectrum resources, existing satellite frequency bands cannot satisfy the demand of IIoT, which have to explore other available spectrum resources. Cognitive satellite networks are promising technologies and have the potential to alleviate the shortage of spectrum resources and enhance spectrum efficiency by sharing both spectral and spatial degrees of freedom. For effective signal estimations, multiple features of wireless signals are needed at receivers, the transmissions of which may cause considerable overhead. To mitigate the overhead, part of parameters, such as modulation order, constellation type, and signal to noise ratio (SNR), could be obtained at receivers through signal estimation rather than transmissions from transmitters to receivers. In this article, a grid method is utilized to process the constellation map to obtain its equivalent probability density function. Then, binary feature matrix of the probability density function is employed to construct a cost function to estimate the modulation order and constellation type for multiple quadrature amplitude modulation (MQAM) signal. Finally, an improved M 2 M ∞ method is adopted to realize the SNR estimation of MQAM. Simulation results show that the proposed method is able to accurately estimate the modulation order, constellation type, and SNR of MQAM signal, and these features are extremely useful in satellite-based IIoT

    Using heterogeneous satellites for passive detection of moving aerial target

    Get PDF
    Passive detection of a moving aerial target is critical for intelligent surveillance. Its implementation can use signals transmitted from satellites. Nowadays, various types of satellites co-exist which can be used for passive detection. As a result, a satellite signal receiver may receive signals from multiple heterogeneous satellites, causing difficult in echo signal detection. In this paper, a passive moving aerial target detection method leveraging signals from multiple heterogeneous satellites is proposed. In the proposed method, a plurality of direct wave signals is separated in a reference channel first. Then, an adaptive filter with normalized least-mean-square (NLMS) is adopted to suppress direct-path interference (DPI) and multi-path interference (MPI) in a surveillance channel. Next, the maximum values of the cross ambiguity function (CAF) and the fourth order cyclic cumulants cross ambiguity function (FOCCCAF) correspond into each separated direct wave signal and echo signal will be utilized as the detection statistic of each distributed sensor. Finally, final detection probabilities are calculated by decision fusion based on results from distributed sensors. To evaluate the performance of the proposed method, extensive simulation studies are conducted. The corresponding simulation results show that the proposed fusion detection method can significantly improve the reliability of moving aerial target detection using multiple heterogeneous satellites. Moveover, we also show that the proposed detection method is able to significantly improve the detection performance by using multiple collaborative heterogeneous satellites

    To Achieve Security and High Spectrum Efficiency: A New Transmission System Based on Faster-than-Nyquist and Deep Learning

    Full text link
    With the rapid development of various services in wireless communications, spectrum resource has become increasingly valuable. Faster-than-Nyquist (FTN) signaling, which was proposed in the 1970s, has been a promising paradigm to improve the spectrum utilization. In this paper, we try to apply FTN into secure communications and propose a secure and high-spectrum-efficiency transmission system based on FTN and deep learning (DL). In the proposed system, the hopping symbol packing ratio with random values makes it difficult for the eavesdropper to obtain the accurate symbol rate and inter-symbol interference (ISI). While the receiver can use the blind estimation to choose the true parameters with the aid of DL. The results show that without the accurate symbol packing ratio, the eavesdropper will suffer from severe performance degradation. As a result, the system can achieve a secure transmission with a higher spectrum efficiency. Also, we propose a simplified symbol packing ratio estimation which has bee employed in our proposed system. Results show that the proposed simplified estimation achieves nearly the same performance as the original structure while its complexity has been greatly reduced

    Adaptive time-switching based energy harvesting relaying protocols

    Get PDF
    Considering a dual-hop energy-harvesting (EH) relaying system, this paper advocates novel relaying protocols based on adaptive time-switching (TS) for amplify-and-forward and decode-and-forward modes, respectively. The optimal TS factor is first studied, which is adaptively adjusted based on the dual-hop channel state information (CSI), accumulated energy, and threshold signal-to-noise ratio (SNR), to achieve the maximum throughput efficiency per block. To reduce the CSI overhead at the EH relay, a low-complexity TS factor design is presented, which only needs single-hop CSI to determine the TS factor. Theoretical results show that, in comparison with the conventional solutions, the proposed optimal/low-complexity TS factor can achieve higher limiting throughput efficiency for sufficiently small threshold SNR. As the threshold SNR approaches infinity, the throughput efficiency of the proposed optimal/low-complexity TS factor tends to zero in a much slower pace than that of the conventional solutions. Simulation results are presented to corroborate the proposed methodology
    corecore