5 research outputs found

    Underutilized Grasses Production: New Evolving Perspectives

    Get PDF
    Globally, over-reliance on major food crops (wheat, rice and maize) has led to food basket’s shrinking, while climate change, environmental pollution and deteriorating soil fertility demand the cultivation of less exhaustive but nutritious grasses. Unlike neglected grasses (grass species restricted to their centres of origin and only grown at the subsistence level), many underutilized grasses (grass species whose yield or usability potential remains unrealized) are resistant and resilient to abiotic stresses and have multiple uses including food (Coix lacryma-jobi), feed (Eragrostis amabilis and Cynodon dactylon), esthetic value (Miscanthus sinensis and Imperata cylindrica), renewable energy production (Spartina pectinata and Andropogon gerardii Vitman) and contribution to ecosystem services (Saccharum spontaneum). Lack of agricultural market globalization, urbanization and prevalence of large commercial enterprises that favor major grasses trade, improved communication means that promoted specialization in favor of established crops, scant planting material of underutilized grasses and fewer research on their production technology and products development are the prime challenges posed to underutilized grasses promotion. Integration of agronomic research with novel plant protection measures and plant breeding and molecular genetics approaches for developing biotic and abiotic stresses tolerant cultivars along with the development of commercially attractive food products hold the future key for promoting underutilized grasses for supplanting food security and sustainably multiplying economic outcomes

    Biochemical profiling of selected plant extracts and their antifungal activity in comparison with fungicides against Colletotrichum capsici L. causing anthracnose of Chilli

    No full text
    Chili (Capsicum annuum L.) is the utmost significant cash crop of Pakistan. Annually, about 50% chili yield is reduced by chili anthracnose disease caused by Colletotrichum capsici. The current study was conducted to explore the antifungal potential of plant extracts in comparison with commercial fungicides against C. capsici. Morphologically recognized strains of C. capsici were subjected to pathogenicity assay where strain CC-2 showed a highly virulent response. Results from in-vitro studies showed that Ginger (15 % concentration) inhibited fungal mycelial growth and spore germination and results were comparable to Nativo and Antracol at 1000 ppm. From the protective and curative trials, among plant extracts, Ginger at 15% showed maximum crop protective activity (84%) and maximum curative activity (70%). Consequently, among fungicides, Antracol at 1000 ppm showed highest crop protective activity (92%) and maximum curative efficacy (96%). The results of pot experiments showed that among the plant extracts, Ginger significantly inhibited C. capsici and increased plant growth while among fungicides, Antracol was found to be more effective than Nativo. PCA explored the correlation between growth parameters of chili plants treated with plant extracts and fungicides. Biochemical profiling and phytochemical characterization indicated the presence of tannins, phenols, terpenoids, flavonoids, alkaloids, reducing sugars and anthraquinones in ginger and chicory extracts. Ginger showed the highest DPPH scavenging activity (64.9 ± 1.85) as compared to chicory (54.6 ± 2.8). GC–MS analysis of plant extracts revealed the presence of various bioactive compounds including Ethanol, Acetone, 2-Butanone, Trichloromethane, 2-Butanone, 4-(4‑hydroxy-3-methoxyphenyl)-, Gingerol, 1, 2-Benzenedicarboxylic acid, diisooctyl ester, Hexane, Glycerin, Sucrose, Hexadecanoic acid, methyl ester, 9-Octadecenoic acid (Z)-, methyl ester, 1,2-Benzenedicarboxylic acid, mono (2-ethylhexyl) ester, n-Hexadecanoic acid, cis-Vaccenic acid, 1-Monolinoleoylglycerol trimethylsilyl ether, and 9,12,15-Octadecatrienoic acid, 2-[(trimethylsilyl)oxy]-1-[[(trimethylsilyl)oxy] methyl]ethyl ester, (Z,Z,Z). FTIR analysis showed 12, 8 and 13 peak values respectively indicating the presence of important functional groups. NMR analysis showed 4 and 7 peak values of ginger and chicory extracts indicating the structures of functional groups. There is a need to test the disease suppressive potential of plant extracts under field conditions to manage other fatal plant pathogens

    Bacillus spp. as Bioagents: Uses and Application for Sustainable Agriculture

    No full text
    Food security will be a substantial issue in the near future due to the expeditiously growing global population. The current trend in the agriculture industry entails the extravagant use of synthesized pesticides and fertilizers, making sustainability a difficult challenge. Land degradation, lower production, and vulnerability to both abiotic and biotic stresses are problems caused by the usage of these pesticides and fertilizers. The major goal of sustainable agriculture is to ameliorate productivity and reduce pests and disease prevalence to such a degree that prevents large-scale damage to crops. Agriculture is a composite interrelation among plants, microbes, and soil. Plant microbes play a major role in growth promotion and improve soil fertility as well. Bacillus spp. produces an extensive range of bio-chemicals that assist in plant disease control, promote plant development, and make them suitable for agricultural uses. Bacillus spp. support plant growth by N fixation, P and K solubilization, and phytohormone synthesis, in addition to being the most propitious biocontrol agent. Moreover, Bacilli excrete extracellular metabolites, including antibiotics, lytic enzymes, and siderophores, and demonstrate antagonistic activity against phytopathogens. Bacillus spp. boosts plant resistance toward pathogens by inducing systemic resistance (ISR). The most effective microbial insecticide against insects and pests in agriculture is Bacillus thuringiensis (Bt). Additionally, the incorporation of toxin genes in genetically modified crops increases resistance to insects and pests. There is a constant increase in the identified Bacillus species as potential biocontrol agents. Moreover, they have been involved in the biosynthesis of metallic nanoparticles. The main objective of this review article is to display the uses and application of Bacillus specie as a promising biopesticide in sustainable agriculture. Bacillus spp. strains that are antagonistic and promote plant yield attributes could be valuable in developing novel formulations to lead the way toward sustainable agriculture
    corecore