7,092 research outputs found

    Probing the gluon density of the proton in the exclusive photoproduction of vector mesons at the LHC: A phenomenological analysis

    Full text link
    The current uncertainty on the gluon density extracted from the global parton analysis is large in the kinematical range of small values of the Bjorken - xx variable and low values of the hard scale Q2Q^2. An alternative to reduces this uncertainty is the analysis of the exclusive vector meson photoproduction in photon - hadron and hadron - hadron collisions. This process offers a unique opportunity to constrain the gluon density of the proton, since its cross section is proportional to the gluon density squared. In this paper we consider current parametrizations for the gluon distribution and estimate the exclusive vector meson photoproduction cross section at HERA and LHC using the leading logarithmic formalism. We perform a fit of the normalization of the γh\gamma h cross section and the value of the hard scale for the process and demonstrate that the current LHCb experimental data are better described by models that assume a slow increasing of the gluon distribution at small - xx and low Q2Q^2.Comment: 8 pages, 6 figures, 1 table. Version published in European Physical Journal

    Photon and Pomeron -- induced production of Dijets in pppp, pApA and AAAA collisions

    Full text link
    In this paper we present a detailed comparison of the dijet production by photon -- photon, photon -- pomeron and pomeron -- pomeron interactions in pppp, pApA and AA{\rm AA} collisions at the LHC energy. The transverse momentum, pseudo -- rapidity and angular dependencies of the cross sections are calculated at LHC energy using the Forward Physics Monte Carlo (FPMC), which allows to obtain realistic predictions for the dijet production with two leading intact hadrons. We obtain that \gamma \pom channel is dominant at forward rapidities in pppp collisions and in the full kinematical range in the nuclear collisions of heavy nuclei. Our results indicate that the analysis of dijet production at the LHC can be useful to test the Resolved Pomeron model as well as to constrain the magnitude of the absorption effects.Comment: 11 pages, 6 figures, 1 table. Improved and enlarged version published in European Physical Journal

    Production of exotic charmonium in γγ\gamma \gamma interactions at hadronic colliders

    Get PDF
    In this paper we investigate the Exotic Charmonium (EC) production in γγ\gamma \gamma interactions present in proton-proton, proton-nucleus and nucleus-nucleus collisions at the CERN Large Hadron Collider (LHC) energies as well as for the proposed energies of the Future Circular Collider (FCC). Our results demonstrate that the experimental study of these processes is feasible and can be used to constrain the theoretical decay widths and shed some light on the configuration of the considered multiquark states.Comment: 7 pages, 2 figures, 3 tables. v2: Revised version published in Physical Review

    On the rapidity dependence of the average transverse momentum in hadronic collisions

    Full text link
    The energy and rapidity dependence of the average transverse momentum pT\langle p_T \rangle in pppp and pApA collisions at RHIC and LHC energies are estimated using the Colour Glass Condensate (CGC) formalism. We update previous predictions for the pTp_T - spectra using the hybrid formalism of the CGC approach and two phenomenological models for the dipole - target scattering amplitude. We demonstrate that these models are able to describe the RHIC and LHC data for the hadron production in pppp, dAudAu and pPbpPb collisions at pT20p_T \le 20 GeV. Moreover, we present our predictions for pT\langle p_T \rangle and demonstrate that the ratio pT(y)/pT(y=0)\langle p_{T}(y)\rangle / \langle p_{T}(y = 0)\rangle decreases with the rapidity and has a behaviour similar to that predicted by hydrodynamical calculations.Comment: 11 pages, 7 figures; revised version: new results for the average transverse momentum at partonic level added in fig. 4; Results and Discussion section has been improved and enlarge

    Testing the running coupling kTk_{T}-factorization formula for the inclusive gluon production

    Full text link
    The inclusive gluon production at midrapidities is described in the Color Glass Condensate formalism using the kTk_T - factorization formula, which was derived at fixed coupling constant considering the scattering of a dilute system of partons with a dense one. Recent analysis demonstrated that this approach provides a satisfactory description of the experimental data for the inclusive hadron production in pp/pA/AApp/pA/AA collisions. However, these studies are based on the fixed coupling kTk_T - factorization formula, which does not take into account the running coupling corrections, which are important to set the scales present in the cross section. In this paper we consider the running coupling corrected kTk_T - factorization formula conjectured some years ago and investigate the impact of the running coupling corrections on the observables. In particular, the pseudorapidity distributions and charged hadrons multiplicity are calculated considering pppp, dAu/pPbdAu/pPb and AuAu/PbPbAuAu/PbPb collisions at RHIC and LHC energies. We compare the corrected running coupling predictions with those obtained using the original kTk_T - factorization assuming a fixed coupling or a prescription for the inclusion of the running of the coupling. Considering the Kharzeev - Levin - Nardi unintegrated gluon distribution and a simplified model for the nuclear geometry, we demonstrate that the distinct predictions are similar for the pseudorapidity distributions in pp/pA/AApp/pA/AA collisions and for the charged hadrons multiplicity in pp/pApp/pA collisions. On the other hand, the running coupling corrected kTk_T - factorization formula predicts a smoother energy dependence for dN/dηdN/d\eta in AAAA collisions.Comment: 9 pages and 4 figure

    About possible contribution of intrinsic charm component to inclusive spectra of charmed mesons

    Full text link
    We calculate differential energy spectra (xFx_F-distributions) of charmed particles produced in proton-nucleus collisions, assuming the existence of intrinsic heavy quark components in the proton wave function. For the calculation, the recently proposed factorization scheme is used, based on the Color Glass Condensate theory and specially suited for predictions of a production of particles with large rapidities. It is argued that the intrinsic charm component can, if it exists, dominate in a sum of two components, intrinsic + extrinsic, of the inclusive spectrum of charmed particles produced in proton-nucleus collisions at high energies, in the region of medium xFx_F, 0.15<xF<0.70.15 < x_F < 0.7, and can give noticeable contribution to atmospheric fluxes of prompt muons and neutrinos.Comment: 10 pages, 4 figures. Version published in J. Phys. G

    The MIPSGAL View of Supernova Remnants in the Galactic Plane

    Get PDF
    We report the detection of Galactic supernova remnants (SNRs) in the mid-infrared (at 24 and 70 μm), in the coordinate ranges 10° < l < 65° and 285° < l < 350°, |b| < 1°, using MIPS aboard the Spitzer Space Telescope. We search for infrared counterparts to SNRs in Green's catalog and identify 39 out of 121, i.e., a detection rate of about 32%. Such a relatively low detection fraction is mainly due to confusion with nearby foreground/background sources and diffuse emission. The SNRs in our sample show a linear trend in [F_8/F_(24)] versus [F_(70)/F_(24)]. We compare their infrared fluxes with their corresponding radio flux at 1.4 GHz and find that most remnants have a ratio of 70 μm to 1.4 GHz which is similar to those found in previous studies of SNRs (with the exception of a few that have ratios closer to those of H II regions). Furthermore, we retrieve a slope close to unity when correlating infrared (24 and 70 μm) with 1.4 GHz emission. Our survey is more successful in detecting remnants with bright X-ray emission, which we find is well correlated with the 24 μm morphology. Moreover, by comparing the power emitted in the X-ray, infrared, and radio, we conclude that the energy released in the infrared is comparable to the cooling in the X-ray range

    Quarkonium+γ\gamma production in coherent hadron - hadron interactions at LHC energies

    Full text link
    In this paper we study the H+γH + \gamma (H=J/ΨH = J/\Psi and Υ\Upsilon) production in coherent hadron - hadron interactions at LHC energies. Considering the ultrarelativistic protons as a source of photons, we estimate the γ+pH+γ+X\gamma + p \rightarrow H + \gamma + X cross section using the non-relativistic QCD (NRQCD) factorization formalism and considering different sets of values for the matrix elements. Our results for the total p+pp+H+γ+X p + p \rightarrow p + H + \gamma + X cross sections and rapidity distributions at s=7\sqrt{s} = 7 and 14 TeV demonstrate that the experimental analysis of the J/Ψ+γJ/\Psi + \gamma production at LHC is feasible.Comment: 6 pages, 3 figures, 1 table. Improved version with a new figure. Version to be published in European Physical Journal
    corecore