8,323 research outputs found

    Spinning AdS Propagators

    Get PDF
    We develop the embedding formalism to describe symmetric traceless tensors in Anti-de Sitter space. We use this formalism to construct the bulk-to-bulk propagator of massive spin J fields and check that it has the expected short distance and massless limits. We also and a split representation for the bulk-to-bulk propagator, by writing it as an integral over the boundary of the product of two bulk-to-boundary propagators. We exemplify the use of this representation with the computation of the conformal partial wave decomposition of Witten diagrams. In particular, we determine the Mellin amplitude associated to AdS graviton exchange between minimally coupled scalars of general dimension, including the regular part of the amplitude.Comment: 48 pages, 6 figure

    Scalar perturbations and the possible self-destruction of the phantom menace

    Full text link
    Some analysis of the supernovae type Ia observational data seems to indicate that the Universe today is dominated by a phantom field, for which all energy conditions are violated. Such phantom field may imply a singularity in a future finite time, called big rip. Studying the evolution of scalar perturbations for such a field, we show that if the pressure is negative enough, the Universe can become highly inhomogeneous and this phantom menace may be avoided.Comment: Latex file, 5 page

    Does magnetic pressure affect the ICM dynamics?

    Get PDF
    A possible discrepancy found in the determination of mass from gravitational lensing data, and from X-rays observations, has been largely discussed in the latest years (for instance, Miralda-Escude & Babul (1995)). Another important discrepancy related to these data is that the dark matter is more centrally condensed than the X-ray-emitting gas, and also with respect to the galaxy distribution (Eyles et al. 1991). Could these discrepancies be consequence of the standard description of the ICM, in which it is assumed hydrostatic equilibrium maintained by thermal pressure? We follow the evolution of the ICM, considering a term of magnetic pressure, aiming at answering the question whether or not these discrepancies can be explained via non-thermal terms of pressure. Our results suggest that the magnetic pressure could only affect the dynamics of the ICM on scales as small as < 1kpc. Our models are constrained by the observations of large and small scale fields and we are successful at reproducing available data, for both Faraday rotation limits and inverse Compton limits for the magnetic fields. In our calculations the radius (from the cluster center) in which magnetic pressure reaches equipartition is smaller than radii derived in previous works, as a consequence of the more realistic treatment of the magnetic field geometry and the consideration of a sink term in the cooling flow.Comment: 8 pages with 7 figures included. MNRAS accepted. Minor changes in the section of discussions and conclusions. Also available at http://www.iac.es/publicaciones/preprints.htm

    Bottom production in Photon and Pomeron -- induced interactions at the LHC

    Full text link
    In this paper we present a detailed comparison of the bottom production in gluon -- gluon, photon -- gluon, photon -- photon, pomeron -- gluon, pomeron -- pomeron and pomeron -- photon interactions at the LHC. The transverse momentum, pseudo -- rapidity and ξ\xi dependencies of the cross sections are calculated at LHC energy using the Forward Physics Monte Carlo (FPMC), which allows to obtain realistic predictions for the bottom production with one or two leading intact protons. Moreover, predictions for the the kinematical range probed by the LHCb Collaboration are also presented. Our results indicate that the analysis of the single diffractive events is feasible using the Run I LHCb data.Comment: 8 pages, 3 figures, 1 table. Version published in Physical Review
    corecore