821 research outputs found
Permanent Local Housing Allocation Grant
Pacific Grove, California is experiencing a lack of affordable housing. A Permanent Local Housing Allocation Grant was submitted to the California Department of Housing and Community Development on behalf of the City’s Housing Division. The funds will be used to provide rental assistance to alleviate the lack of affordable housing. The contributing factors include land use restrictions also known as zoning, a high demand for affordable rentals, and the high construction costs associated with the development of affordable housing. The consequences are homelessness, financial impacts, and poor health. A survey to determine the communities housing needs and priorities determined that the grant would best be allocated toward rental assistance to support the lack of affordable housing within the City. The City was successful in meeting the expected outcomes of this project since the grant was awarded. It is recommended that the City apply for this grant again next year
Factors Associated With Physical and Psychological Health Outcomes Among Inmate Women in Portugal
This study aims to identify the variables associated with self-reported physical and psychological symptoms and the perceived health status of inmate women in Portugal. Data collection took place in two female Portuguese prisons and participated in the study 232 women. Physical symptomatology was associated with having children, physical abuse in childhood, a higher number of chronic diseases, and anxiety. Older women, the experience of sexual abuse, and chronic diseases were associated with a worse perception of physical health. Psychological symptoms were higher in women that reported substance abuse before prison, chronic diseases, anxiety, and depression. Finally, a combination of the prior variables (sexual abuse, anxiety, and depression) and three additional variables (lower education level, not having contact with mental health services before prison, and being already sentenced) was associated with worse perceptions of mental health conditions. These findings can be used as a platform for future research, as well as a tool for prison policy regarding the particular gender health needs of inmate women.- (undefined
Arginase levels and their association with Th17-related cytokines, soluble adhesion molecules (sICAM-1 and sVCAM-1) and hemolysis markers among steady-state sickle cell anemia patients
Sickle cell anemia (SCA) is characterized by a marked endothelial dysfunction, owing to many factors. Arginine metabolism can be related to the inflammatory chronic state presented by patients, playing a key role in their clinical outcome and vascular endothelium. We investigated the serum arginase levels in 50 SCA patients (22 men and 28 women, mean age of 17 ± 10.5 years) and 28 healthy controls. Serum arginase levels were associated with biochemical hemolysis markers and cytokines involved in Th17 response, as well as levels of soluble intercellular adhesion molecule-1 (sICAM-1) and vascular cell adhesion molecule-1 (sVCAM-1). Arginase concentrations were higher in SCA patients, compared with controls (p = 0.005), and were significantly and positively associated with total bilirubin (p = 0.004), indirect bilirubin (p = 0.04), and aspartate aminotransferase (AST; p = 0.039) in the SCA patient group. Moreover, arginase was significantly and positively associated with transforming growth factor-beta (TGF-beta; p = 0.008) among SCA patients. sICAM-1 was significantly and positively associated to reticulocytes (p = 0.014) and AST (p = 0.04). sVCAM-1 was likewise associated with lactate dehydrogenase (p = 0.03). These data suggest a new insight into arginase metabolism, as we show here a shift in arginine catabolism, where TGF-beta may induces the arginase pathway instead of the nitric oxide pathway and a possible involvement of the vascular activation and the serum arginase in chronic hemolysis among SCA patients. Additional studies should be carried out in order to investigate the mechanisms by which TGF-beta participates in the metabolism of arginase in SCA patients
Rapid turnover of long noncoding RNAs and the evolution of gene expression.
A large proportion of functional sequence within mammalian genomes falls outside protein-coding exons and can be transcribed into long RNAs. However, the roles in mammalian biology of long noncoding RNA (lncRNA) are not well understood. Few lncRNAs have experimentally determined roles, with some of these being lineage-specific. Determining the extent by which transcription of lncRNA loci is retained or lost across multiple evolutionary lineages is essential if we are to understand their contribution to mammalian biology and to lineage-specific traits. Here, we experimentally investigated the conservation of lncRNA expression among closely related rodent species, allowing the evolution of DNA sequence to be uncoupled from evolution of transcript expression. We generated total RNA (RNAseq) and H3K4me3-bound (ChIPseq) DNA data, and combined both to construct catalogues of transcripts expressed in the adult liver of Mus musculus domesticus (C57BL/6J), Mus musculus castaneus, and Rattus norvegicus. We estimated the rate of transcriptional turnover of lncRNAs and investigated the effects of their lineage-specific birth or death. LncRNA transcription showed considerably greater gain and loss during rodent evolution, compared with protein-coding genes. Nucleotide substitution rates were found to mirror the in vivo transcriptional conservation of intergenic lncRNAs between rodents: only the sequences of noncoding loci with conserved transcription were constrained. Finally, we found that lineage-specific intergenic lncRNAs appear to be associated with modestly elevated expression of genomically neighbouring protein-coding genes. Our findings show that nearly half of intergenic lncRNA loci have been gained or lost since the last common ancestor of mouse and rat, and they predict that such rapid transcriptional turnover contributes to the evolution of tissue- and lineage-specific gene expression
Regulatory Divergence of Transcript Isoforms in a Mammalian Model System.
Phenotypic differences between species are driven by changes in gene expression and, by extension, by modifications in the regulation of the transcriptome. Investigation of mammalian transcriptome divergence has been restricted to analysis of bulk gene expression levels and gene-internal splicing. Using allele-specific expression analysis in inter-strain hybrids of Mus musculus, we determined the contribution of multiple cellular regulatory systems to transcriptome divergence, including: alternative promoter usage, transcription start site selection, cassette exon usage, alternative last exon usage, and alternative polyadenylation site choice. Between mouse strains, a fifth of genes have variations in isoform usage that contribute to transcriptomic changes, half of which alter encoded amino acid sequence. Virtually all divergence in isoform usage altered the post-transcriptional regulatory instructions in gene UTRs. Furthermore, most genes with isoform differences between strains contain changes originating from multiple regulatory systems. This result indicates widespread cross-talk and coordination exists among different regulatory systems. Overall, isoform usage diverges in parallel with and independently to gene expression evolution, and the cis and trans regulatory contribution to each differs significantly
ESTRESSE OCUPACIONAL RELACIONADO À ASSISTÊNCIA DE ENFERMAGEM EM TERAPIA INTENSIVA
Objetivo: estimar a prevalência de estresse ocupacional entre profissionais de enfermagem que atuam em Unidade de Terapia Intensiva e identificar sua associação com variáveis sociodemográficas, profissionais e relacionadas à assistência de enfermagem. Método: estudo transversal, realizado em um hospital de ensino de Salvador, Bahia, Brasil, com 54 profissionais. Os dados foram coletados entre fevereiro e março de 2020 por meio da Escala Bianchi de Stress e analisados pelo Programa Stata. Resultados: a prevalência de estresse ocupacional em nÃvel médio ou alto foi de 57,4%. Maiores nÃveis de estresse foram associados significativamente ao menor tempo de formação (p-valor=0,05), ser enfermeiro (p-valor=0,00), enfrentar a morte do paciente (p-valor=0,01), atender aos familiares dos pacientes crÃticos (p-valor=0,00) e atender à s necessidades dos familiares (p-valor=0,00). Conclusão: a elevada prevalência de estresse ocupacional, bem como os fatores associados identificados, foram informações essenciais para implementação de estratégias preventivas. Descritores: Estresse Ocupacional. Cuidados de Enfermagem. Unidade de Terapia Intensiva. Equipe de Enfermagem. Enfermagem
Genotyping And Descriptive Proteomics Of A Potential Zoonotic Canine Strain Of Giardia Duodenalis, Infective To Mice
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)The zoonotic potential of giardiasis, as proposed by WHO since the late 70's, has been largely confirmed in this century. The genetic assemblages A and B of Giardia duodenalis are frequently isolated from human and canine hosts. Most of the assemblage A strains are not infective to adult mice, which can limit the range of studies regarding to biology of G. duodenalis, including virulence factors and the interaction with host immune system. This study aimed to determine the infectivity in mice of an assemblage A Giardia duodenalis strain (BHFC1) isolated from a dog and to classify the strain in sub-assemblages (Al, All, AIII) through the phylogenetic analysis of beta-giardin (bg), triose phosphate isomerase (tpi) and glutamate dehydrogenase (gdh) genes. In addition, the proteomic profile of soluble and insoluble protein fractions of trophozoites was analyzed by 2D-electrophoresis. Accordingly, trophozoites of BHFC1 were highly infective to Swiss mice. The phylogenetic analysis of tpi and gdh revealed that BHFC1 clustered to sub-assemblage Al. The proteomic map of soluble and insoluble protein fractions led to the identification of 187 proteins of G. duodenalis, 27 of them corresponding to hypothetical proteins. Considering both soluble and soluble fractions, the vast majority of the identified proteins (n = 82) were classified as metabolic proteins, mainly associated with carbon and lipid metabolism, including 53 proteins with catalytic activity. Some of the identified proteins correspond to antigens while others can be correlated with virulence. Besides a significant complementation to the proteomic data of G. duodenalis, these data provide an important source of information for future studies on various aspects of the biology of this parasite, such as virulence factors and host and pathogen interactions.1110CNPq (Brazilian National Council for Scientific and Technological Development)FAPEMIG (State Funding Agency of Minas Gerais (FAPEMIG))INCTV (National Institute of Science and Technology in Vaccines)Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq
The Novel Collagen Matrikine, Endotrophin, is Associated with Mortality and Cardiovascular Events in Patients with Atherosclerosis
Background: Rupture of atherosclerotic plaques is the major cause of acute cardiovascular events. The biomarker PRO-C6 measuring Endotrophin, a matrikine of collagen type VI, may provide valuable information detecting subjects in need of intensified strategies for secondary prevention. Objective: In this study, we evaluate endotrophin in human atherosclerotic plaques and circulating levels of PRO-C6 in patients with atherosclerosis, to determine the predictive potential of the biomarker. Methods: Sections from the stenotic human carotid plaques were stained with the PRO-C6 antibody. PRO-C6 was measured in serum of patients enrolled in the Carotid Plaque Imagining Project (CPIP) (discovery cohort, n = 577) and the innovative medicines initiative surrogate markers for micro- and macrovascular hard end-points for innovative diabetes tools (IMI-SUMMIT, validation cohort, n = 1,378). Median follow-up was 43 months. Kaplan–Meier curves and log-rank tests were performed in the discovery cohort. Cox proportional hazard regression analysis (HR with 95% CI) was used in the discovery cohort and binary logistic regression (OR with 95% CI) in the validation cohort. Results: PRO-C6 was localized in the core and shoulder of the atherosclerotic plaque. In the discovery cohort, PRO-C6 independently predicted future cardiovascular events (HR 1.089 [95% CI 1.019 −1.164], p = 0.01), cardiovascular death (HR 1.118 [95% CI 1.008 −1.241], p = 0.04) and all-cause death (HR 1.087 [95% CI 1.008 −1.172], p = 0.03). In the validation cohort, PRO-C6 predicted future cardiovascular events (OR 1.063 [95% CI 1.011 −1.117], p = 0.017). Conclusion: PRO-C6 is present in the atherosclerotic plaque and associated with future cardiovascular events, cardiovascular death and all-cause mortality in two large prospective cohorts
Biotechnologies as catalysts for driving net zero
R&D impact delivered by this work extends to policy development and to the benefits derived from delivering circularity, green growth and reducing carbon emissions by anaerobic digestion that (1) recovers a variety of organic wastes and low value biomass and (2) produces bioenergy and fertiliser. Other biotechnologies being developed can recover resources for the production of fuels (CH4, H2 and NH3), chemicals e.g. volatile fatty acids, biopolymers e.g. polyhydroxyalkanoates and single-cell proteins that can be used for animal feed. Biotechnologies delivering solutions for Power to X, for energy storage and for the capture and use of carbon have also been a focus of our research. Monitoring and control methodologies for the biotechnologies have been developed, including the use of analytical technologies such as FTNIR, GC-IMS and qPCR. Work continues on the valorisation of digestates as microbial and algae growth media, and the recovery of nutrients (NPK). Evaluations of the fate of polymers in the environment, their biochemical recycling and the production of biostimulants for soil and crop improvements, nitrogen fixing and emissions’ reduction are all in progress. Technologies are currently across the TRL 3-6 range and require further R&D to progress them to commercialisation. Deploying industrial biotechnologies is essential to act as sustainable catalysts for change and for delivering net zero, circular economy and green growth. Biotechnologies can impact beneficially on the sustainability of cities and benefit their relationship and integration with surrounding rural areas
- …