367 research outputs found
Anharmonic mixing in a magnetic trap
We have experimentally observed re-equilibration of a magnetically trapped
cloud of metastable neon atoms after it was put in a non-equilibrium state.
Using numerical simulations we show that anharmonic mixing, equilibration due
to the collisionless dynamics of atoms in a magnetic trap, is the dominant
process in this equilibration. We determine the dependence of its time on trap
parameters and atom temperature. Furthermore we observe in the simulations a
resonant energy exchange between the radial and axial trap dimensions at a
ratio of trap frequencies \omega_r / \omega_z = 3/2. This resonance is
explained by a simple oscillator model.Comment: 9 pages, 6 figure
Ventilation area measured with eit in order to optimize peep settings in mechanically ventilated patients
INTRODUCTION. Electrical Impedance Tomography (EIT) is a non-invasive imaging technique, which can be used to visualize ventilation. Ventilation will be measured by impedance changes due to ventilation. OBJECTIVES. The aim of this study was to optimize PEEP settings based on the ventilation area of EIT images during a decremental PEEP trial. METHODS. After a recruitment maneuver, a decremental PEEP trial was performed in 10 mechanically ventilated post cardiac surgery patients. Ventilation area, blood gases, FRC and compliance were measured at each PEEP level. The ventilation area was defined as the surface of ventilation at one lung slice measured with EIT and was expressed as percentage of its maximum obtained during a recruitment maneuver (RM). RESULTS. The amount of ventilated pixels during the RM is set as 100 %. Figure 1 shows the amount of ventilated pixels as percentage compared to its maximum during the RM. The ventilation area was significantly smaller at 5 and 0 PEEP compared to its maximum at both the dependent and non-dependent lung. Also PaO2/FiO2 and FRC were significantly lower at these PEEP levels. (Figure presented) Bars represent the mean + SD. Black = dependent lung region, White = non-dependent lung region. *
Detection of 'best' positive end-expiratory pressure derived from electrical impedance tomography parameters during a decremental positive end-expiratory pressure trial
Introduction: This study compares different parameters derived from electrical impedance tomography (EIT) data to define 'best' positive end-expiratory pressure (PEEP) during a decremental PEEP trial in mechanically-ventilated patients. 'Best' PEEP is regarded as minimal lung collapse and overdistention in order to prevent ventilator-induced lung injury.Methods: A decremental PEEP trial (from 15 to 0 cm H2O PEEP in 4 steps) was performed in 12 post-cardiac surgery patients on the ICU. At each PEEP step, EIT measurements were performed and from this data the following were calculated: tidal impedance variation (TIV), regional compliance, ventilation surface area (VSA), center of ventilation (COV), regional ventilation delay (RVD index), global inhomogeneity (GI index), and intratidal gas distribution. From the latter parameter we developed the ITV index as a new homogeneity parameter. The EIT parameters were compared with dynamic compliance and the PaO2/FiO2 ratio.Results: Dynamic compliance and the PaO2/FiO2 ratio had the highest value at 10 and 15 cm H2O PEEP, respectively. TIV, regional compliance and VSA had a maximum value at 5 cm H2O PEEP for the non-dependent lung region and a maximal value at 15 cm H2O PEEP for the dependent lung regio
Lung stress and strain calculations in mechanically ventilated patients in the intensive care unit
Background Stress and strain are parameters to describe respiratory mechanics during mechanical ventilation. Calculations of stress require invasive and difficult to perform esophageal pressure measurements. The hypothesis of the present study was: Can lung stress be reliably calculated based on non-invasive lung volume measurements, during a decremental Positive end-expiratory pressure (PEEP) trial in mechanically ventilated patients with different diseases? Methods Data of 26 pressure-controlled ventila
Suppression of Density Fluctuations in a Quantum Degenerate Fermi Gas
We study density profiles of an ideal Fermi gas and observe Pauli suppression
of density fluctuations (atom shot noise) for cold clouds deep in the quantum
degenerate regime. Strong suppression is observed for probe volumes containing
more than 10,000 atoms. Measuring the level of suppression provides sensitive
thermometry at low temperatures. After this method of sensitive noise
measurements has been validated with an ideal Fermi gas, it can now be applied
to characterize phase transitions in strongly correlated many-body systems.Comment: minor edit: fixed technical problem with arxiv's processing of .eps
figur
- …