55 research outputs found
Auto-Drawing and Functionalization by Vapor-Phase Assisted Polymerization on Solid Surface
Formation of two- and three-dimensional micro architectures with chemical functions was verified by photo-vapor phase assisted surface polymerization (VASP) of functional monomer vapors combined with an auto-drawing system manipulated by prescribed programs. The surface modification by the photo-VASP of styrene vapor progressed rapidly, and a fine lines-pattern of photo-mask was transcribed as the corresponding polymer accumulations on poly(methyl methacrylate) (PMMA) substrate surfaces. Substrate surface modified by photo-VASP of acrylic acid showed reversible changes in hydrophilic/hydrophobic properties according to repeating external chemical stimuli. The successive auto-drawing by photo-VASP of three kinds of monomer vapors was examined under spot illumination from a fine optical fiber on an X-Y stage manipulated by a prescribed program, resulting in the production of a pre-designed functional structure by successful accumulations of corresponding polymers on the substrate surface
Short Bamboo Fibers Coated by Lignin during Super-Heated Steam Treatment and Bio-composites using Same
In order to apply short bamboo fiber (sBF) as a functional reinforcement of bio-composites having specific electrical properties, lignin-surfaced sBF was prepared via super-heated steam (SHS) treatment of bamboo. The sBF was easily isolated from the intrinsic fibrovascular bundle structure of bamboo after SHS treatment and pulverization. The isolated sBF was surfaced by brown-colored hydrophobic compounds, which were lignin-derived compounds generated during the SHS treatment. The functional bio-composites were prepared from the SHS-treated sBF and polypropylene and showed specific antistatic properties. Surface electrical resistance values of the composites decreased significantly with increase in the aspect ratio (AR) value of sBF. It is considered that the lignin-derived surfacing of sBF functions as an electron carrier in the composite, in particular, the longer sBF acts as an effective bridge for transporting electrons over long distances along conductive paths. From a cross-sectional microscopic image of the bio-composite, orientated sBFs were observed in its surface layer, supporting the suggestion of conductive path formation. Further, it was confirmed that the reinforcing effect of the presence of sBF was increased with increasing AR value
Adhesion Control of Interface between Cellulose and Polypropylene by Vapor-Phase Assisted Surface Copolymerization
In order to achieve the effective interface bonding between biomass microfiller and commodity plastics, consecutive copolymerization of hydrophilic acrylic acid (AA) and hydrophobic butyl acrylate (BA) using vapor-phase assisted surface polymerization (VASP) technology was applied to prepare micro composites consisting of cellulose micro crystal (CμC) and polypropylene (PP). After the copolymerization by VASP, CμC surfaces were covered by accumulated polymers: P(AA-co-BA) including block-type copolymer and homopolymers of 6.2-25.3 wt% versus CμC. Although structures of the products were unspecified, it was expected to be mixtures of block copolymers and homopolymers. Subsequently prepared P(AA-co-BA) on CμC/PP (5/95 wt/wt) composites expressed a superior mechanical toughness, which had increased threefold when compared to intact CμC/PP composite. This increase in toughness was mainly based on an increase in elongation rate, reflecting improvement of the adhesion strength at the interface between CμC surface and PP. The trace amounts: 0.31 wt% of accumulated P(AA-co-BA) on CμC surface must function as an effective adhesive/compatibilizer at the interface
Short bamboo fibers prepared by super-heated steam treatment for antistatic bio-composites
In order to apply short bamboo fiber (sBF) as a functional reinforcement of bio-composites having specific electrical properties, lignin-surfaced sBF was prepared via super-heated steam (SHS) treatment of bamboo. The sBF was easily isolated from the intrinsic fibrovascular bundle structure of bamboo after SHS treatment and pulverization. The isolated sBF was surfaced by brown-colored hydrophobic compounds, which were lignin-derived compounds generated during the SHS treatment. The functional bio-composites were prepared from the SHS-treated sBF and polypropylene and showed specific antistatic properties. Surface electrical resistance values of the composites decreased significantly with increase in the aspect ratio (AR) value of sBF. It is considered that the lignin-derived surfacing of sBF functions as an electron carrier in the composite. In particular, the longer sBF acts as an effective bridge for transporting electrons over long distances along conductive paths. From a cross-sectional microscopic image of the bio-composite, orientated sBFs were observed in its surface layer, supporting the suggestion of conductive path formation. Further, it was confirmed that the reinforcing effect of the presence of sBF was increased with increasing AR value
Rapid identification of different Escherichia coli sequence type 131 clades
Escherichia coli sequence type 131 (ST131) is a pandemic clonal lineage that is responsible for the global increase in fluoroquinolone resistance and extended-spectrum-β-lactamase (ESBL) producers. The members of ST131 clade C, especially subclades C2 and C1-M27, are associated with ESBLs. We developed a multiplex conventional PCR assay with the ability to detect all ST131 clades (A, B, and C), as well as C subclades (C1-M27, C1-nM27 [C1-non-M27], and C2). To validate the assay, we used 80 ST131 global isolates that had been fully sequenced. We then used the assay to define the prevalence of each clade in two Japanese collections consisting of 460 ESBL-producing E. coli ST131 (2001-12) and 329 E. coli isolates from extraintestinal sites (ExPEC) (2014). The assay correctly identified the different clades in all 80 global isolates: clades A (n = 12), B (n = 12), and C, including subclades C1-M27 (n = 16), C1-nM27 (n = 20), C2 (n = 17), and other C (n = 3). The assay also detected all 565 ST131 isolates in both collections without any false positives. Isolates from clades A (n = 54), B (n = 23), and C (n = 483) corresponded to the O serotypes and the fimH types of O16-H41, O25b-H22, and O25b-H30, respectively. Of the 483 clade C isolates, C1-M27 was the most common subclade (36%), followed by C1-nM27 (32%) and C2 (15%). The C1-M27 subclade with blaCTX-M-27 became especially prominent after 2009. Our novel multiplex PCR assay revealed the predominance of the C1-M27 subclade in recent Japanese ESBL-producing E. coli isolates and is a promising tool for epidemiological studies of ST131.http://aac.asm.org2018-02-27hj2017Medical Microbiolog
In vitro throughput screening of anticancer drugs using patient-derived cell lines cultured on vascularized three-dimensional stromal tissues
Takahashi Y., Morimura R., Tsukamoto K., et al. In vitro throughput screening of anticancer drugs using patient-derived cell lines cultured on vascularized three-dimensional stromal tissues. Acta Biomaterialia 183, 111 (2024); https://doi.org/10.1016/j.actbio.2024.05.037.The development of high-throughput anticancer drug screening methods using patient-derived cancer cell (PDC) lines that maintain their original characteristics in an in vitro three-dimensional (3D) culture system poses a significant challenge to achieving personalized cancer medicine. Because stromal tissue plays a critical role in the composition and maintenance of the cancer microenvironment, in vitro 3D-culture using reconstructed stromal tissues has attracted considerable attention. Here, a simple and unique in vitro 3D-culture method using heparin and collagen together with fibroblasts and endothelial cells to fabricate vascularized 3D-stromal tissues for in vitro culture of PDCs is reported. Whereas co-treatment with bevacizumab, a monoclonal antibody against vascular endothelial growth factor, and 5-fluorouracil significantly reduced the survival rate of 3D-cultured PDCs to 30%, separate addition of each drug did not induce comparable strong cytotoxicity, suggesting the possibility of evaluating the combined effect of anticancer drugs and angiogenesis inhibitors. Surprisingly, drug evaluation using eight PDC lines with the 3D-culture method resulted in a drug efficacy concordance rate of 75% with clinical outcomes. The model is expected to be applicable to in vitro throughput drug screening for the development of personalized cancer medicine. Statement of significance: To replicate the cancer microenvironment, we constructed a cancer-stromal tissue model in which cancer cells are placed above and inside stromal tissue with vascular network structures derived from vascular endothelial cells in fibroblast tissue using CAViTs method. Using this method, we were able to reproduce the invasion and metastasis processes of cancer cells observed in vivo. Using patient-derived cancer cells, we assessed the possibility of evaluating the combined effect with an angiogenesis inhibitor. Further, primary cancer cells also grew on the stromal tissues with the normal medium. These data suggest that the model may be useful for new in vitro drug screening and personalized cancer medicine
Artificial intelligence and logic programming, and its applications to the supervisory and control systems of power systems.
Este trabalho apresenta um estudo de aplicações de técnicas de inteligência artificial nos sistemas de supervisão e controle de sistemas de potência. Em relação a inteligência artificial, são abordados métodos de resolução de problemas e os sistemas especialistas. Em seguida é feito um estudo de programação em lógica, que serve como base teórica para a linguagem Prolog. Em relação aos sistemas de potência são analisadas a finalidade e a importância dos sistemas de supervisão e controle. Por fim, as técnicas de inteligência artificial são apresentadas, através de exemplos de aplicação, como novas abordagens que permitem melhorar o desempenho dos sistemas de supervisão e controle dos sistemas de potência.This work presents a study of applications of Artificial Intelligence techniques to the Power Systems Supervisory and Control Systems. With respect to Artificial Intelligence, methods of problem solving and Expert Systems are treated. A study of Logic Programming follow, which serves as a theoretical basis for PROLOG language. Concerning to Power Systems, the purpose and importance of Supervisory and Control Systems are analysed. Last, Artificial Intelligence techniques are presented, through application examples, as new approach that allow performance improvement of Power Systems Supervisory and Control Systems
- …