27 research outputs found

    Multiple algebraisations of an elliptic Calogero-Sutherland model

    Full text link
    Recently, Gomez-Ullate et al. (1) have studied a particular N-particle quantum problem with an elliptic function potential supplemented by an external field. They have shown that the Hamiltonian operator preserves a finite dimensional space of functions and as such is quasi exactly solvable (QES). In this paper we show that other types of invariant function spaces exist, which are in close relation to the algebraic properties of the elliptic functions. Accordingly, series of new algebraic eigenfunctions can be constructed.Comment: 9 Revtex pages, 3 PS-figures; Summary, abstract and conclusions extende

    Families of superintegrable Hamiltonians constructed from exceptional polynomials

    Full text link
    We introduce a family of exactly-solvable two-dimensional Hamiltonians whose wave functions are given in terms of Laguerre and exceptional Jacobi polynomials. The Hamiltonians contain purely quantum terms which vanish in the classical limit leaving only a previously known family of superintegrable systems. Additional, higher-order integrals of motion are constructed from ladder operators for the considered orthogonal polynomials proving the quantum system to be superintegrable

    Polynomial algebras and exact solutions of general quantum non-linear optical models I: Two-mode boson systems

    Full text link
    We introduce higher order polynomial deformations of A1A_1 Lie algebra. We construct their unitary representations and the corresponding single-variable differential operator realizations. We then use the results to obtain exact (Bethe ansatz) solutions to a class of 2-mode boson systems, including the Boson-Einstein Condensate models as special cases. Up to an overall factor, the eigenfunctions of the 2-mode boson systems are given by polynomials whose roots are solutions of the associated Bethe ansatz equations. The corresponding eigenvalues are expressed in terms of these roots. We also establish the spectral equivalence between the BEC models and certain quasi-exactly solvable Sch\"ordinger potentials.Comment: 20 pages, final version to appear in J. Phys. A: Math. Theor

    Higher Order Quantum Superintegrability: a new "Painlev\'e conjecture"

    Full text link
    We review recent results on superintegrable quantum systems in a two-dimensional Euclidean space with the following properties. They are integrable because they allow the separation of variables in Cartesian coordinates and hence allow a specific integral of motion that is a second order polynomial in the momenta. Moreover, they are superintegrable because they allow an additional integral of order N>2N>2. Two types of such superintegrable potentials exist. The first type consists of "standard potentials" that satisfy linear differential equations. The second type consists of "exotic potentials" that satisfy nonlinear equations. For N=3N= 3, 4 and 5 these equations have the Painlev\'e property. We conjecture that this is true for all N≄3N\geq3. The two integrals X and Y commute with the Hamiltonian, but not with each other. Together they generate a polynomial algebra (for any NN) of integrals of motion. We show how this algebra can be used to calculate the energy spectrum and the wave functions.Comment: 23 pages, submitted as a contribution to the monographic volume "Integrability, Supersymmetry and Coherent States", a volume in honour of Professor V\'eronique Hussin. arXiv admin note: text overlap with arXiv:1703.0975

    Extended Krein-Adler theorem for the translationally shape invariant potentials

    Get PDF
    Considering successive extensions of primary translationally shape invariant potentials, we enlarge the Krein-Adler theorem to mixed chains of state adding and state-deleting Darboux-Backlund transformations. It allows us to establish novel bi-linear Wronskian and determinantal identities for classical orthogonal polynomials
    corecore