15,730 research outputs found
Energy spectrum, dissipation and spatial structures in reduced Hall magnetohydrodynamic
We analyze the effect of the Hall term in the magnetohydrodynamic turbulence
under a strong externally supported magnetic field, seeing how this changes the
energy cascade, the characteristic scales of the flow and the dynamics of
global magnitudes, with particular interest in the dissipation.
Numerical simulations of freely evolving three-dimensional reduced
magnetohydrodynamics (RHMHD) are performed, for different values of the Hall
parameter (the ratio of the ion skin depth to the macroscopic scale of the
turbulence) controlling the impact of the Hall term. The Hall effect modifies
the transfer of energy across scales, slowing down the transfer of energy from
the large scales up to the Hall scale (ion skin depth) and carrying faster the
energy from the Hall scale to smaller scales. The final outcome is an effective
shift of the dissipation scale to larger scales but also a development of
smaller scales. Current sheets (fundamental structures for energy dissipation)
are affected in two ways by increasing the Hall effect, with a widening but at
the same time generating an internal structure within them. In the case where
the Hall term is sufficiently intense, the current sheet is fully delocalized.
The effect appears to reduce impulsive effects in the flow, making it less
intermittent.Comment: 17 pages, 10 figure
Reactivity of dolomitizing fluids and Mg source evaluation of fault-controlled dolomitization at the Benicàssim outcrop analogue (Maestrat Basin, E Spain)
Peer reviewedPostprin
The Distance Geometry of Music
We demonstrate relationships between the classic Euclidean algorithm and many
other fields of study, particularly in the context of music and distance
geometry. Specifically, we show how the structure of the Euclidean algorithm
defines a family of rhythms which encompass over forty timelines
(\emph{ostinatos}) from traditional world music. We prove that these
\emph{Euclidean rhythms} have the mathematical property that their onset
patterns are distributed as evenly as possible: they maximize the sum of the
Euclidean distances between all pairs of onsets, viewing onsets as points on a
circle. Indeed, Euclidean rhythms are the unique rhythms that maximize this
notion of \emph{evenness}. We also show that essentially all Euclidean rhythms
are \emph{deep}: each distinct distance between onsets occurs with a unique
multiplicity, and these multiplicies form an interval . Finally,
we characterize all deep rhythms, showing that they form a subclass of
generated rhythms, which in turn proves a useful property called shelling. All
of our results for musical rhythms apply equally well to musical scales. In
addition, many of the problems we explore are interesting in their own right as
distance geometry problems on the circle; some of the same problems were
explored by Erd\H{o}s in the plane.Comment: This is the full version of the paper: "The distance geometry of deep
rhythms and scales." 17th Canadian Conference on Computational Geometry (CCCG
'05), University of Windsor, Canada, 200
Hall effect in a strong magnetic field: Direct comparisons of compressible magnetohydrodynamics and the reduced Hall magnetohydrodynamic equations
In this work we numerically test a model of Hall magnetohydrodynamics in the presence of a strong mean magnetic field: the reduced Hall magnetohydrodynamic model RHMHD derived by Gomez et al., Phys. Plasmas 15, 102303 2008 with the addition of weak compressible effects. The main advantage of this model lies in the reduction of computational cost. Nevertheless, up until now the degree of agreement with the original Hall MHD system and the range of validity in a regime of turbulence were not established. In this work direct numerical simulations of three-dimensional Hall MHD turbulence in the presence of a strong mean magnetic field are compared with simulations of the weak compressible RHMHD model. The results show that the degree of agreement is very high when the different assumptions of RHMHD, such as spectral anisotropy, are satisfied. Nevertheless, when the initial conditions are isotropic but the mean magnetic field is maintained strong, the results differ at the beginning but asymptotically reach a good agreement at relatively short times. We also found evidence that the compressibility still plays a role in the dynamics of these systems, and the weak compressible RHMHD model is able to capture these effects. In conclusion the weak compressible RHMHD model is a valid approximation of the Hall MHD turbulence in the relevant physical context. © 2010 American Institute of Physics.Fil: Martin, Luis Nicolas. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Dmitruk, Pablo Ariel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Gomez, Daniel Osvaldo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentin
Lower Cretaceous (Hauterivian-Albian) ammonite biostratigraphy in the Maestrat Basin (E Spain)
Peer reviewedPublisher PD
Depositional and structural controls on a fault-related dolostone formation (Maestrat Basin, E Spain)
Acknowledgments This research was funded by the Natural Environment Research Council (NERC) Centre for Doctoral Training (CDT) in Oil & Gas, through a PhD grant to EH. Equinor ASA are thanked for providing additional support. Additional funding was provided by the Grup Consolidat de Recerca “Geologia Sedimentària” (2017SGR-824) and DGICYT Spanish Projects CGL2017-85532-P, PGC2018-093903-B-C22 and PID2020-118999GB-I00, all funded by the Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER). EGR acknowledges the Spanish Ministry of Science, Innovation and Universities for the “Ramón y Cajal” fellowship RYC2018-026335-I. EH, EGR, JDM and JN conceived the idea and provided funding whilst field data was collected by EH, EGR, and JDM. EH organised the sampling for geochemical analysis (supervised by JDM) and RS and JG provided the regional stratigraphic context and structural cross-section. Petrographic data was collected by EH (supervised by JN). EH wrote the manuscript with edits and contributions provided by all co authors.Peer reviewedPublisher PD
Collective Awareness for Abnormality Detection in Connected Autonomous Vehicles
The advancements in connected and autonomous vehicles in these times demand the availability of tools providing the agents with the capability to be aware and predict their own states and context dynamics. This article presents a novel approach to develop an initial level of collective awareness (CA) in a network of intelligent agents. A specific collective self-awareness functionality is considered, namely, agent-centered detection of abnormal situations present in the environment around any agent in the network. Moreover, the agent should be capable of analyzing how such abnormalities can influence the future actions of each agent . Data-driven dynamic Bayesian network (DBN) models learned from time series of sensory data recorded during the realization of tasks (agent network experiences) are here used for abnormality detection and prediction. A set of DBNs, each related to an agent , is used to allow the agents in the network to reach synchronously aware possible abnormalities occurring when available models are used on a new instance of the task for which DBNs have been learned. A growing neural gas (GNG) algorithm is used to learn the node variables and conditional probabilities linking nodes in the DBN models; a Markov jump particle filter (MJPF) is employed for state estimation and abnormality detection in each agent using learned DBNs as filter parameters. Performance metrics are discussed to asses the algorithm’s reliability and accuracy. The impact is also evaluated by the communication channel used by the network to share the data sensed in a distributed way by each agent of the network. The IEEE 802.11p protocol standard has been considered for communication among agents. Performances of the DBN-based abnormality detection models under different channel and source conditions are discussed. The effects of distances among agents and of the delays and packet losses are analyzed in different scenario categories (urban, suburban, and rural). Real data se..
Introducing landscape character assessment and the ecosystem service approach to India: A case study
Landscape Character Assessment has provided the context for land use planning decisions and for identifying priorities for environmental restoration and enhancement in England since the 1990s. Increasing awareness of the importance of ecosystem services has led to the method being refined in order to enable informed management of change, with the inclusion of socioeconomic data and the identification of strategic management objectives providing an integrated approach to sustainable development in a changing This research, funded by the British Council UK-India Education and Research Initiative (UKIERI), was prompted by concerns expressed by ecologists about the increase in the extent of an invasive plant species, Prosopis juliflora, in the district of Kachchh, Gujarat. A combination of Landscape Character Assessment and participatory appraisal were used in order to produce a Natural Character Area profile for the coastal plain. The process revealed that concerns regarding the spread of Prosopis were outweighed by its socio-economic importance as a source of fuel, charcoal, honey and gum. Their most pressing concern was the impact of recent industrial development on the environment, in particular water abstraction and pollution, crop predation by livestock and increasing soil salinity
- …