30,537 research outputs found

    Complete structure of Z_n Yukawa couplings

    Full text link
    We give the complete twisted Yukawa couplings for all the Z_n orbifold constructions in the most general case, i.e. when orbifold deformations are considered. This includes a certain number of tasks. Namely, determination of the allowed couplings, calculation of the explicit dependence of the Yukawa couplings values on the moduli expectation values (i.e. the parameters determining the size and shape of the compactified space), etc. The final expressions are completely explicit, which allows a counting of the DIFFERENT Yukawa couplings for each orbifold (with and without deformations). This knowledge is crucial to determine the phenomenological viability of the different schemes, since it is directly related to the fermion mass hierarchy. Other facts concerning the phenomenological profile of Z_n orbifolds are also discussed, e.g. the existence of non--diagonal entries in the fermion mass matrices, which is related to a non--trivial structure of the Kobayashi--Maskawa matrix. Finally some theoretical results are given, e.g. the no--participation of (1,2) moduli in twisted Yukawa couplings. Likewise, (1,1) moduli associated with fixed tori which are involved in the Yukawa coupling, do not affect the value of the coupling.Comment: 60 page

    Modified Renormalization Strategy for Sandpile Models

    Full text link
    Following the Renormalization Group scheme recently developed by Pietronero {\it et al}, we introduce a simplifying strategy for the renormalization of the relaxation dynamics of sandpile models. In our scheme, five sub-cells at a generic scale bb form the renormalized cell at the next larger scale. Now the fixed point has a unique nonzero dynamical component that allows for a great simplification in the computation of the critical exponent zz. The values obtained are in good agreement with both numerical and theoretical results previously reported.Comment: APS style, 9 pages and 3 figures. To be published in Phys. Rev.

    Functional advantages offered by many-body coherences in biochemical systems

    Full text link
    Quantum coherence phenomena driven by electronic-vibrational (vibronic) interactions, are being reported in many pulse (e.g. laser) driven chemical and biophysical systems. But what systems-level advantage(s) do such many-body coherences offer to future technologies? We address this question for pulsed systems of general size N, akin to the LHCII aggregates found in green plants. We show that external pulses generate vibronic states containing particular multipartite entanglements, and that such collective vibronic states increase the excitonic transfer efficiency. The strength of these many-body coherences and their robustness to decoherence, increase with aggregate size N and do not require strong electronic-vibrational coupling. The implications for energy and information transport are discussed.Comment: arXiv admin note: text overlap with arXiv:1706.0776
    • …
    corecore