16,331 research outputs found
The complex Sine-Gordon equation as a symmetry flow of the AKNS Hierarchy
It is shown how the complex sine-Gordon equation arises as a symmetry flow of
the AKNS hierarchy. The AKNS hierarchy is extended by the ``negative'' symmetry
flows forming the Borel loop algebra. The complex sine-Gordon and the vector
Nonlinear Schrodinger equations appear as lowest negative and second positive
flows within the extended hierarchy. This is fully analogous to the well-known
connection between the sine-Gordon and mKdV equations within the extended mKdV
hierarchy.
A general formalism for a Toda-like symmetry occupying the ``negative''
sector of sl(N) constrained KP hierarchy and giving rise to the negative Borel
sl(N) loop algebra is indicated.Comment: 8 pages, LaTeX, typos corrected, references update
Aubry-Mather measures in the non convex setting
The adjoint method, introduced in [L. C. Evans, Arch. Ration. Mech. Anal., 197 (2010), pp. 1053ā1088] and [H. V. Tran, Calc. Var. Partial Differential Equations, 41 (2011), pp. 301ā319], is used to construct analogues to the AubryāMather measures for nonconvex Hamiltonians. More precisely, a general construction of probability measures, which in the convex setting agree with Mather measures, is provided. These measures may fail to be invariant under the Hamiltonian flow and a dissipation arises, which is described by a positive semidefinite matrix of Borel measures. However, in the case of uniformly quasiconvex Hamiltonians the dissipation vanishes, and as a consequence the invariance is guaranteed.
Copyright Ā© 2011 Society for Industrial and Applied Mathematic
Dressing approach to the nonvanishing boundary value problem for the AKNS hierarchy
We propose an approach to the nonvanishing boundary value problem for
integrable hierarchies based on the dressing method. Then we apply the method
to the AKNS hierarchy. The solutions are found by introducing appropriate
vertex operators that takes into account the boundary conditions.Comment: Published version Proc. Quantum Theory and Symmetries 7
(QTS7)(Prague, Czech Republic, 2011
Riccati-type equations, generalised WZNW equations, and multidimensional Toda systems
We associate to an arbitrary -gradation of the Lie algebra of a
Lie group a system of Riccati-type first order differential equations. The
particular cases under consideration are the ordinary Riccati and the matrix
Riccati equations. The multidimensional extension of these equations is given.
The generalisation of the associated Redheffer--Reid differential systems
appears in a natural way. The connection between the Toda systems and the
Riccati-type equations in lower and higher dimensions is established. Within
this context the integrability problem for those equations is studied. As an
illustration, some examples of the integrable multidimensional Riccati-type
equations related to the maximally nonabelian Toda systems are given.Comment: LaTeX2e, 18 page
- ā¦