21,527 research outputs found
Theory of triangular lattice quasi-one-dimensional charge-transfer solids
Recent investigations of the magnetic properties and the discovery of
superconductivity in quasi-one-dimensional triangular lattice organic
charge-transfer solids have indicated the severe limitations of the effective
1/2-filled band Hubbard model for these and related systems. Our computational
studies of these materials within a 1/4-filled band Hubbard model in which the
organic monomer molecules, and not their dimers, constitute the sites of the
Hamiltonian are able to reproduce the experimental results. We ascribe the spin
gap transition in kappa-(BEDT-TTF)_2B(CN)_4 to the formation of a
two-dimensional paired-electron crystal and make the testable prediction that
the spin gap will be accompanied by charge-ordering and period doubling in two
directions. We find enhancement of the long-range component of superconducting
pairing correlations by the Hubbard repulsive interaction for band parameters
corresponding to kappa-(BEDT-TTF)_2CF_3SO_3. The overall results strongly
support a valence bond theory of superconductivity we have proposed recently.Comment: 8 pages, 7 figure
Bond patterns and charge order amplitude in 1/4-filled charge-transfer solids
Metal-insulator transition accompanied by charge-ordering has been widely
investigated in quasi-one-dimensional conductors, including in particular
organic charge-transfer solids. Among such materials the 1/4-filled band
charge-transfer solids are of strong interest, because of the commensurate
nature of the charge-ordering in these systems. The period-four charge-order
pattern ...1100... here is accompanied by two distinct bond distortion
patterns, giving rise to bond-charge-density waves (BCDW) of types 1 and 2.
Using quantum Monte Carlo methods, we determine the phase diagram within the
extended Hubbard Hamiltonian that gives both types 1 and 2 BCDW in the
thermodynamic limit. We further investigate the effect of electron-electron and
electron-phonon interactions on the amount of charge disproportionation. Our
results show that between these two bond patterns, one (BCDW2) in general
coexists with a large magnitude charge order, which is highly sensitive to
electron-phonon interactions, while the other (BCDW1) is characterized by weak
charge order. We discuss the relevance of our work to experiments on several
1/4-filled conductors, focusing in particular on the materials (EDO-TTF)_2X and
(DMEDO-TTF)_2X with large amplitude charge-order.Comment: 7 pages, 8 figure
Supersymmetric Extension of the Quantum Spherical Model
In this work, we present a supersymmetric extension of the quantum spherical
model, both in components and also in the superspace formalisms. We find the
solution for short/long range interactions through the imaginary time formalism
path integral approach. The existence of critical points (classical and
quantum) is analyzed and the corresponding critical dimensions are determined.Comment: 21 pages, fixed notation to match published versio
Statistical distributions in the folding of elastic structures
The behaviour of elastic structures undergoing large deformations is the
result of the competition between confining conditions, self-avoidance and
elasticity. This combination of multiple phenomena creates a geometrical
frustration that leads to complex fold patterns. By studying the case of a rod
confined isotropically into a disk, we show that the emergence of the
complexity is associated with a well defined underlying statistical measure
that determines the energy distribution of sub-elements,``branches'', of the
rod. This result suggests that branches act as the ``microscopic'' degrees of
freedom laying the foundations for a statistical mechanical theory of this
athermal and amorphous system
Complete Fusion Enhancement and Suppression of Weakly Bound Nuclei at Near Barrier Energies
We consider the influence of breakup channels on the complete fusion of
weakly bound systems in terms of dynamic polarization potentials. It is argued
that the enhancement of the cross section at sub-barrier energies may be
consistent with recent experimental observations that nucleon transfer, often
leading to breakup, is dominant compared to direct breakup. The main trends of
the experimental complete fusion cross section for Li + Bi are
analyzed in the framework of the DPP approach.Comment: 12 pages, 2 figure
Probabilistic Model Counting with Short XORs
The idea of counting the number of satisfying truth assignments (models) of a
formula by adding random parity constraints can be traced back to the seminal
work of Valiant and Vazirani, showing that NP is as easy as detecting unique
solutions. While theoretically sound, the random parity constraints in that
construction have the following drawback: each constraint, on average, involves
half of all variables. As a result, the branching factor associated with
searching for models that also satisfy the parity constraints quickly gets out
of hand. In this work we prove that one can work with much shorter parity
constraints and still get rigorous mathematical guarantees, especially when the
number of models is large so that many constraints need to be added. Our work
is based on the realization that the essential feature for random systems of
parity constraints to be useful in probabilistic model counting is that the
geometry of their set of solutions resembles an error-correcting code.Comment: To appear in SAT 1
- …