69 research outputs found
On Group Averaging for SO(n,1)
The technique known as group averaging provides powerful machinery for the
study of constrained systems. However, it is likely to be well defined only in
a limited set of cases. Here, we investigate the possibility of using a
`renormalized' group averaging in certain models. The results of our study may
indicate a general connection between superselection sectors and the rate of
divergence of the group averaging integral.Comment: Minor corrections, 17 pages,RevTe
Enhanced van der Waals interaction at interfaces
Using a recently obtained (general) formula for the interaction energy
between an excited and a ground-state atom (Sherkunov Y 2007 Phys. Rev. A 75
012705), we consider the interaction energy between two such atoms near the
interface between two media. We demonstrate that under the circumstances of the
resonant coupling of the excited atom to the surface polariton mode of a
vacuum-medium system the nonretarded atom*-atom interaction energy can be
enhanced by (several) orders of magnitude in comparison with the van der Waals
interaction energy of the two isolated atoms.Comment: 8 pages, 5 figures, local-field corrections included and improved
presentatio
Quantization of the Chern-Simons Coupling Constant
We investigate the quantum consistency of p-form Maxwell-Chern-Simons
electrodynamics in 3p+2 spacetime dimensions (for p odd). These are the
dimensions where the Chern--Simons term is cubic, i.e., of the form FFA. For
the theory to be consistent at the quantum level in the presence of magnetic
and electric sources, we find that the Chern--Simons coupling constant must be
quantized. We compare our results with the bosonic sector of eleven dimensional
supergravity and find that the Chern--Simons coupling constant in that case
takes its corresponding minimal allowed value.Comment: 15 pages, 1 figure, JHEP3.cls. Equation (8.6) corrected and perfect
agreement with previous results is obtaine
That's a wrap!
Calibration technology provides us with a fast and elegant way to find the
supergravity solutions for BPS wrapped M-branes. Its true potential had however
remained untapped due to the absence of a classification of calibrations in
spacetimes with non-trivial flux. The applications of this method were thus
limited in practise to M-branes wrapping Kahler calibrated cycles. In this
paper, we catagorize a type of generalised calibrations which exist in
supergravity backgrounds and contain Kahler calibrations as a sub-class. This
broadens the arena of brane configurations whose supergravity solutions are
accessible through the calibration 'short-cut' method.Comment: 19 pages, typos correcte
Parametric instabilities in magnetized multicomponent plasmas
This paper investigates the excitation of various natural modes in a
magnetized bi-ion or dusty plasma. The excitation is provided by parametrically
pumping the magnetic field. Here two ion-like species are allowed to be fully
mobile. This generalizes our previous work where the second heavy species was
taken to be stationary. Their collection of charge from the background neutral
plasma modifies the dispersion properties of the pump and excited waves. The
introduction of an extra mobile species adds extra modes to both these types of
waves. We firstly investigate the pump wave in detail, in the case where the
background magnetic field is perpendicular to the direction of propagation of
the pump wave. Then we derive the dispersion equation relating the pump to the
excited wave for modes propagating parallel to the background magnetic field.
It is found that there are a total of twelve resonant interactions allowed,
whose various growth rates are calculated and discussed.Comment: Published in May 2004; this is a late submission to the archive. 14
pages, 8 figure
Black Hole Entropy in the Chern-Simons Formulation of 2+1 Gravity
We examine Carlip's derivation of the 2+1 Minkowskian black hole entropy. A
simplified derivation of the boundary action -valid for any value of the level
k- is given.Comment: 6 pages, RevTeX, minor changes. Old title "Some remarks on Carlip's
derivation of the 2+1 black hole entropy". Version to appear in Phys. Rev.
Simulations of plasma confinement in an antihydrogen trap
The three-dimensional particle-in-cell (3-D PIC) simulation code WARP is used to study positron confinement in antihydrogen traps. The magnetic geometry is close to that of a UC Berkeley experiment conducted, with electrons, as part of the ALPHA collaboration (W. Bertsche et al., AIP Conf. Proc. 796, 301 (2005)). In order to trap antihydrogen atoms, multipole magnetic fields are added to a conventional Malmberg-Penning trap. These multipole fields must be strong enough to confine the antihydrogen, leading to multipole field strengths at the trap wall comparable to those of the axial magnetic field. Numerical simulations reported here confirm recent experimental measurements of reduced particle confinement when a quadrupole field is added to a Malmberg-Penning trap. It is shown that, for parameters relevant to various antihydrogen experiments, the use of an octupole field significantly reducesthe positron losses seen with a quadrupole field. A unique method for obtaining a 3-D equilibrium of the positrons in the trap with a collisionless PIC code was developed especially for the study of the antihydrogen trap; however, it is of practical use for other traps as well
Recommended from our members
A method for obtaining three-dimensional computation equilibrium of non-neutral plasmas using WARP
Computer simulation studies of the stability and transport properties of trapped non-neutral plasmas require the numerical realization of a three-dimensional plasma distribution. This paper presents a new numerical method for obtaining, without an explicit model for physical collisions in the code, a low noise three-dimensional computational equilibrium distribution. This requires both the loading of particles into an idealized distribution and the relaxation from that distribution toward an approximate numerical equilibrium. The equilibrium can then be modified through a slow change of system parameters, to generate other equilibria. In the present work we apply this method to a UC Berkeley experiment on electron confinement in magnetic geometries appropriate for the ALPHA anti-hydrogen experiment, using the three-dimensional Particle-In-Cell code WARP. WARP's guiding center mover and its option to switch between different solvers during a simulation are highly valuable because they speed up the simulations; they enable the practical use of the new technique for generating numerical equilibrium states of trapped nonneutral plasmas
Spatial Hypersurfaces in Causal Set Cosmology
Within the causal set approach to quantum gravity, a discrete analog of a
spacelike region is a set of unrelated elements, or an antichain. In the
continuum approximation of the theory, a moment-of-time hypersurface is well
represented by an inextendible antichain. We construct a richer structure
corresponding to a thickening of this antichain containing non-trivial
geometric and topological information. We find that covariant observables can
be associated with such thickened antichains and transitions between them, in
classical stochastic growth models of causal sets. This construction highlights
the difference between the covariant measure on causal set cosmology and the
standard sum-over-histories approach: the measure is assigned to completed
histories rather than to histories on a restricted spacetime region. The
resulting re-phrasing of the sum-over-histories may be fruitful in other
approaches to quantum gravity.Comment: Revtex, 12 pages, 2 figure
- …