6 research outputs found
Recommended from our members
Sensitivity Analysis Applied to the Validation of the 10 B Capture Reaction in Nuclear Fuel Casks
Boron has commonly been used in nuclear fuel casks to ensure a sufficient margin of subcriticality. The amount of boron used in most casks far exceeds the amount of boron present in any of the available benchmark experiments. Such heavy loadings of boron in the casks may result in considerable spectral differences as compared to the benchmarks, resulting in boron sensitivities that are very different from those of the benchmarks. Before the calculations to determine the nuclear safety margin for various fuel loadings are deemed acceptable, as part of the safety basis, the computer code and cross sections must be validated against experimental benchmarks that cover the area of applicability of the proposed cask design. Therefore, this study was performed to determine if these available benchmarks can be used to validate a criticality code and neutron cross sections for the fuel casks. The sensitivity/uncertainty methodology has been applied to several application cask systems with different boron areal densities. Although, the sensitivities of the nuclear fuel cask applications are not completely covered by the set of benchmarks that were used in this study with regard to the 10B capture cross section, the effect of this lack of coverage on the keff is minimal. Thus, the experimental biases are determined to be appropriate for the cask systems, and no additional bias (penalty) due to high boron loading need be imposed
Recommended from our members
Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel
The purpose of this calculation report, Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel, is to validate the computational method used to perform postclosure criticality calculations. The validation process applies the criticality analysis methodology approach documented in Section 3.5 of the Disposal Criticality Analysis Methodology Topical Report. The application systems for this validation consist of waste packages containing transport, aging, and disposal canisters (TAD) loaded with commercial spent nuclear fuel (CSNF) of varying assembly types, initial enrichments, and burnup values that are expected from the waste stream and of varying degree of internal component degradation that may occur over the 10,000-year regulatory time period. The criticality computational tool being evaluated is the general-purpose Monte Carlo N-Particle (MCNP) transport code. The nuclear cross-section data distributed with MCNP 5.1.40 and used to model the various physical processes are based primarily on the Evaluated Nuclear Data File/B Version VI (ENDF/B-VI) library. Criticality calculation bias and bias uncertainty and lower bound tolerance limit (LBTL) functions for CSNF waste packages are determined based on the guidance in ANSI/ANS 8.1-1998 (Ref. 4) and ANSI/ANS 8.17-2004 (Ref. 5), as described in Section 3.5.3 of Ref. 1. The development of this report is consistent with Test Plan for: Range of Applicability and Bias Determination for Postclosure Criticality. This calculation report has been developed in support of licensing activities for the proposed repository at Yucca Mountain, Nevada, and the results of the calculation may be used in the criticality evaluation for CSNF waste packages based on a conceptual TAD canister
Recommended from our members