467 research outputs found
Extensions of positive definite functions on amenable groups
Let be a subset of a amenable group such that and
. The main result of the paper states that if the Cayley graph of
with respect to has a certain combinatorial property, then every positive
definite operator-valued function on can be extended to a positive definite
function on . Several known extension results are obtained as a corollary.
New applications are also presented
EPG-representations with small grid-size
In an EPG-representation of a graph each vertex is represented by a path
in the rectangular grid, and is an edge in if and only if the paths
representing an share a grid-edge. Requiring paths representing edges
to be x-monotone or, even stronger, both x- and y-monotone gives rise to three
natural variants of EPG-representations, one where edges have no monotonicity
requirements and two with the aforementioned monotonicity requirements. The
focus of this paper is understanding how small a grid can be achieved for such
EPG-representations with respect to various graph parameters.
We show that there are -edge graphs that require a grid of area
in any variant of EPG-representations. Similarly there are
pathwidth- graphs that require height and area in
any variant of EPG-representations. We prove a matching upper bound of
area for all pathwidth- graphs in the strongest model, the one where edges
are required to be both x- and y-monotone. Thus in this strongest model, the
result implies, for example, , and area bounds
for bounded pathwidth graphs, bounded treewidth graphs and all classes of
graphs that exclude a fixed minor, respectively. For the model with no
restrictions on the monotonicity of the edges, stronger results can be achieved
for some graph classes, for example an area bound for bounded treewidth
graphs and bound for graphs of bounded genus.Comment: Appears in the Proceedings of the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017
Analysis of scale-free networks based on a threshold graph with intrinsic vertex weights
Many real networks are complex and have power-law vertex degree distribution,
short diameter, and high clustering. We analyze the network model based on
thresholding of the summed vertex weights, which belongs to the class of
networks proposed by Caldarelli et al. (2002). Power-law degree distributions,
particularly with the dynamically stable scaling exponent 2, realistic
clustering, and short path lengths are produced for many types of weight
distributions. Thresholding mechanisms can underlie a family of real complex
networks that is characterized by cooperativeness and the baseline scaling
exponent 2. It contrasts with the class of growth models with preferential
attachment, which is marked by competitiveness and baseline scaling exponent 3.Comment: 5 figure
On retracts, absolute retracts, and folds in cographs
Let G and H be two cographs. We show that the problem to determine whether H
is a retract of G is NP-complete. We show that this problem is fixed-parameter
tractable when parameterized by the size of H. When restricted to the class of
threshold graphs or to the class of trivially perfect graphs, the problem
becomes tractable in polynomial time. The problem is also soluble when one
cograph is given as an induced subgraph of the other. We characterize absolute
retracts of cographs.Comment: 15 page
On edge intersection graphs of paths with 2 bends
An EPG-representation of a graph G is a collection of paths in a grid, each corresponding to a single vertex of G, so that two vertices are adjacent if and only if their corresponding paths share infinitely many points. In this paper we focus on graphs admitting EPG-representations by paths with at most 2 bends. We show hardness of the recognition problem for this class of graphs, along with some subclasses. We also initiate the study of graphs representable by unaligned polylines, and by polylines, whose every segment is parallel to one of prescribed slopes. We show hardness of recognition and explore the trade-off between the number of bends and the number of slopes. © Springer-Verlag GmbH Germany 2016
On the (non-)existence of polynomial kernels for Pl-free edge modification problems
Given a graph G = (V,E) and an integer k, an edge modification problem for a
graph property P consists in deciding whether there exists a set of edges F of
size at most k such that the graph H = (V,E \vartriangle F) satisfies the
property P. In the P edge-completion problem, the set F of edges is constrained
to be disjoint from E; in the P edge-deletion problem, F is a subset of E; no
constraint is imposed on F in the P edge-edition problem. A number of
optimization problems can be expressed in terms of graph modification problems
which have been extensively studied in the context of parameterized complexity.
When parameterized by the size k of the edge set F, it has been proved that if
P is an hereditary property characterized by a finite set of forbidden induced
subgraphs, then the three P edge-modification problems are FPT. It was then
natural to ask whether these problems also admit a polynomial size kernel.
Using recent lower bound techniques, Kratsch and Wahlstrom answered this
question negatively. However, the problem remains open on many natural graph
classes characterized by forbidden induced subgraphs. Kratsch and Wahlstrom
asked whether the result holds when the forbidden subgraphs are paths or cycles
and pointed out that the problem is already open in the case of P4-free graphs
(i.e. cographs). This paper provides positive and negative results in that line
of research. We prove that parameterized cograph edge modification problems
have cubic vertex kernels whereas polynomial kernels are unlikely to exist for
the Pl-free and Cl-free edge-deletion problems for large enough l
On the Threshold of Intractability
We study the computational complexity of the graph modification problems
Threshold Editing and Chain Editing, adding and deleting as few edges as
possible to transform the input into a threshold (or chain) graph. In this
article, we show that both problems are NP-complete, resolving a conjecture by
Natanzon, Shamir, and Sharan (Discrete Applied Mathematics, 113(1):109--128,
2001). On the positive side, we show the problem admits a quadratic vertex
kernel. Furthermore, we give a subexponential time parameterized algorithm
solving Threshold Editing in time,
making it one of relatively few natural problems in this complexity class on
general graphs. These results are of broader interest to the field of social
network analysis, where recent work of Brandes (ISAAC, 2014) posits that the
minimum edit distance to a threshold graph gives a good measure of consistency
for node centralities. Finally, we show that all our positive results extend to
the related problem of Chain Editing, as well as the completion and deletion
variants of both problems
Rainbow domination and related problems on some classes of perfect graphs
Let and let be a graph. A function is a rainbow function if, for every vertex with
, . The rainbow domination number
is the minimum of over all rainbow
functions. We investigate the rainbow domination problem for some classes of
perfect graphs
- …