5,872 research outputs found

    Quantum state of an injected TROPO above threshold : purity, Glauber function and photon number distribution

    Full text link
    In this paper we investigate several properties of the full signal-idler-pump mode quantum state generated by a triply resonant non-degenerate Optical Parametric Oscillator operating above threshold, with an injected wave on the signal and idler modes in order to lock the phase diffusion process. We determine and discuss the spectral purity of this state, which turns out not to be always equal to 1 even though the three interacting modes have been taken into account at the quantum level. We have seen that the purity is essentially dependent on the weak intensity of the injected light and on an asymmetry of the synchronization. We then derive the expression of its total three-mode Glauber P-function, and calculate the joint signal-idler photon number probability distribution and investigate their dependence on the injection

    Entanglement measurement of the quadrature components without the homodyne detection in the spatially multi-mode far-field

    Full text link
    We consider the measuring procedure that in principle allows to avoid the homodyne detection for the simultaneous selection of both quadrature components in the far-field. The scheme is based on the use of the coherent sources of the non-classical light. The possibilities of the procedure are illustrated on the basis of the use of pixellised sources, where the phase-locked sub-Poissonian lasers or the degenerate optical parametric oscillator generating above threshold are chosen as the pixels. The theory of the pixellised source of the spatio-temporal squeezed light is elaborated as a part of this investigation.Comment: 11 pages, 5 figures, RevTeX4. Submitted to Phys. Rev.

    Quantum correlations and fluctuations in the pulsed light produced by a synchronously pumped optical parametric oscillator below its oscillation threshold

    Full text link
    We present a simple quantum theory for the pulsed light generated by a synchronously pumped optical parametric oscillator (SPOPO) in the degenerate case where the signal and idler trains of pulses coincide, below threshold and neglecting all dispersion effects. Our main goal is to precise in the obtained quantum effects, which ones are identical to the c.w. case and which ones are specific to the SPOPO. We demonstrate in particular that the temporal correlations have interesting peculiarities: the quantum fluctuations at different times within the same pulse turn out to be totally not correlated, whereas they are correlated between nearby pulses at times that are placed in the same position relative to the centre of the pulses. The number of significantly correlated pulses is of the order of cavity finesse. We show also that there is perfect squeezing at noise frequencies multiple of the pulse repetition frequency when one approaches the threshold from below on the signal field quadrature measured by a balanced homodyne detection with a local oscillator of very short duration compared to the SPOPO pulse length.Comment: 12 pages, 3 figure

    Nearby low-mass triple system GJ795

    Get PDF
    We report the results of our optical speckle-interferometric observations of the nearby triple system GJ795 performed with the 6-m BTA telescope with diffraction-limited angular resolution. The three components of the system were optically resolved for the first time. Position measurements allowed us to determine the elements of the inner orbit of the triple system. We use the measured magnitude differences to estimate the absolute magnitudes and spectral types of the components of the triple: MVAaM_{V}^{Aa}=7.31±\pm0.08, MVAbM_{V}^{Ab}=8.66±\pm0.10, MVBM_{V}^{B}=8.42±\pm0.10, SpAaSp_{Aa} ≈\approxK5, SpAbSp_{Ab} ≈\approxK9, SpBSp_{B} ≈\approxK8. The total mass of the system is equal to ΣMAB\Sigma\mathcal{M}_{AB}=1.69±0.27M⊙\pm0.27\mathcal{M}_{\odot}. We show GJ795 to be a hierarchical triple system which satisfies the empirical stability criteria.Comment: 6 pages, 2 figures, published in Astrophysical Bulleti
    • …
    corecore