13 research outputs found
The pyramids method application for the synthesis of a parallel algorithm solving finite differential equations scheme Yee. One-dimensional case
In this paper, we propose a modification of the method of the pyramids to build parallel algorithms for explicit difference equations. Its efficiency is shown on a practical example of the differential solution of the one-dimensional equations of the Maxwell in two tasks efficiency. In comparison with a usual parallel algorithm acceleration of calculations is increased by 1.6 times. We investigated the efficiency of the author's approach depending on the height of the pyramid, indicated the limits of applicability of the proposed changes.The research leading to these results has received funding from the Russian Science Foundation grant β16-47-630560-r_a
Block algorithms to solve Zheng/Chen/Zhang's finite-difference equations
Π Π°Π±ΠΎΡΠ° ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π° ΡΠΈΠ½ΡΠ΅Π·Ρ Π±Π»ΠΎΡΠ½ΡΡ
Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² FDTD-ΠΌΠ΅ΡΠΎΠ΄Π° Π΄Π»Ρ ΡΠ°ΡΡΠ΅ΡΠΎΠ² ΠΏΠΎ Π½Π΅ΡΠ²Π½ΠΎΠΉ ΡΠ°Π·Π½ΠΎΡΡΠ½ΠΎΠΉ ΡΡ
Π΅ΠΌΠ΅ Zheng/Chen/Zhang. Π‘ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡΠ΄Π΅Π»ΡΠ΅ΡΡΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠΌΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΡΡΡΠΎΠ΅Π½Π½ΡΡ
Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ², Π²ΡΡΠ²Π»Π΅Π½ΠΈΡ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ Π±Π»ΠΎΡΠ½ΡΡ
Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ ΠΏΠΎ Π½Π΅ΡΠ²Π½ΡΠΌ ΡΠ΅ΡΠΎΡΠ½ΡΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΌ. ΠΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΡΡ
ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΠΎΠ² ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½Π° ΡΠ΅ΡΡΠΈΠΊΡΠ°ΡΠ½ΡΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ.
This paper is devoted to the design of multiblock algorithms of the FDTD-method intended for computations based on a Zheng-Chen-Zhang implicit finite-difference scheme. Special emphasis is placed on experimental research of the designed algorithms and detecting specific features of the multiblock computing based on implicit finite-difference equations. The efficiency of the proposed approaches is proved by a six-fold speed-up of computations.Π Π°Π±ΠΎΡΠ° Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π° ΠΏΡΠΈ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΠ΅ Π³ΡΠ°Π½ΡΠ° Π Π€Π€Π 19-07-00423 Π
Block algorithms to solve Zheng/Chen/Zhang's finite-difference equations
This paper is devoted to the design of multiblock algorithms of the FDTD-method intended for computations based on a Zheng-Chen-Zhang implicit finite-difference scheme. Special emphasis is placed on experimental research of the designed algorithms and detecting specific features of the multiblock computing based on implicit finite-difference equations. The efficiency of the proposed approaches is proved by a six-fold speed-up of computations
Implementation of the FDTD method block algorithm in the MATLAB language using a graphics processing unit. 2D- decomposition case
Π Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ°ΡΡΠ΅ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ° ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΠΎΡΡΠΈ ΠΎΠ±ΡΡΠΌΠ° Π²ΠΈΠ΄Π΅ΠΎΠΏΠ°ΠΌΡΡΠΈ ΠΏΡΠΈ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΡ
Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ ΠΏΠΎ ΠΌΠ΅ΡΠΎΠ΄Ρ FDTD Π½Π° Π½Π΅ΠΏΡΠΎΡΠ΅ΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΌ Π³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΌ ΠΏΡΠΎΡΠ΅ΡΡΠΎΡΠ΅. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ Π΄Π²ΡΠΌΠ΅ΡΠ½ΡΠΉ Π±Π»ΠΎΡΠ½ΡΠΉ Π°Π»Π³ΠΎΡΠΈΡΠΌ FDTD-ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈ Π΅Π³ΠΎ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΡ Π½Π° ΡΠ·ΡΠΊΠ΅ MATLAB. Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ Π±ΡΠ»Π° ΡΠ΅ΡΠ΅Π½Π° ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ° ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΠΎΡΡΠΈ Π³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠ°ΠΌΡΡΠΈ, ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Π°Ρ Π΄ΠΈΡΠΊΡΠ΅ΡΠΈΠ·Π°ΡΠΈΡ ΡΠ΅ΡΠΊΠΈ ΠΏΡΠΈ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡΡ
Π½Π° GPU Π±ΡΠ»Π° ΡΠ°ΡΡΠΈΡΠ΅Π½Π° Ρ 10 ΠΌΠ»Π½. Π΄ΠΎ 85 ΠΌΠ»Π½. ΡΠ·Π»ΠΎΠ² ΡΠΎ ΡΡΠ΅Π΄Π½ΠΈΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ Π² 7,5 ΡΠ°Π· Π΄Π»Ρ Π΄Π²ΡΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ»ΡΡΠ°Ρ FDTD-ΠΌΠ΅ΡΠΎΠ΄Π°. The problem of limited video memory when organizing parallel computing using the FDTD method on a non-professional graphics processor was considered in this article. As a solution, a block algorithm of the FDTD method with 2-D decomposition and its implementation in the MATLAB language are proposed. As a result, the problem of limited graphics memory was solved, the maximum possible discretization of the grid in calculations on the GPU was expanded from 10 million to 85 million nodes with an average acceleration of 7,5 times for the two-dimensional case of the FDTD method.Π Π°Π±ΠΎΡΠ° Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π° ΠΏΡΠΈ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΠ΅ Π³ΡΠ°Π½ΡΠ° Π Π€Π€Π 19-07-00423 Π
Block algorithm for the joint difference solution of the dβAlembert and Maxwell equations
Π₯Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΠΎΠΉ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π½Π° ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΌ ΡΡΠ°ΠΏΠ΅ ΡΠ°Π·Π²ΠΈΡΠΈΡ, ΠΏΠΎ ΠΌΠ½Π΅Π½ΠΈΡ Π°Π²ΡΠΎΡΠΎΠ² Π½Π°ΡΡΠΎΡΡΠ΅Π³ΠΎ Π΄ΠΎΠΊΠ»Π°Π΄Π°, ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΠ΅Ρ Π°ΡΡ
ΠΈΡΠ΅ΠΊΡΡΡΡ Π²ΡΡΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π½Π° ΡΡΠ°ΠΏΠ΅ ΡΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡ Π΄Π»Ρ ΠΠΠ, Π½ΠΎ ΠΈ Π² Ρ
ΠΎΠ΄Π΅ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ ΡΠΈΡΠ»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈ ΡΠΈΠ½ΡΠ΅Π·Π° ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ. Π£ΠΊΠ°Π·Π°Π½Π½ΡΠΉ ΠΏΡΠΈΠ΅ΠΌ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ°ΡΡΠΈΡΠΈΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»Ρ ΠΏΠΎ ΠΏΠΎΠΈΡΠΊΡ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ (Π² ΡΠΌΡΡΠ»Π΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ) ΠΎΡΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ ΡΠΈΡΠ»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π° Π½Π° ΡΠΏΠΎΠΌΡΠ½ΡΡΡΡ Π°ΡΡ
ΠΈΡΠ΅ΠΊΡΡΡΡ. Π ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΠΌΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅ Π΄Π°Π½Π½Π°Ρ ΠΈΠ΄Π΅Ρ ΠΈΠ»Π»ΡΡΡΡΠΈΡΡΠ΅ΡΡΡ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ°Ρ
ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π²ΡΡΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΈ ΠΎΠΏΡΠΈΠΊΠΈ, ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΡ
ΠΠ°ΠΊΡΠ²Π΅Π»Π»Π°, ΠΈ FDTD-ΠΌΠ΅ΡΠΎΠ΄Π°. ΠΠ΅Π΄Π°Π²Π½ΠΎ Π±ΡΠ»ΠΈ ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½Ρ Π±Π»ΠΎΡΠ½ΡΠ΅ Π°Π»Π³ΠΎΡΠΈΡΠΌΡ Π΄Π»Ρ ΡΠ°Π·Π½ΠΎΡΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ
ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ, Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΠ°ΠΊΡΠ²Π΅Π»Π»Π° (FDTD-ΠΌΠ΅ΡΠΎΠ΄). ΠΡ
ΡΡΠΏΠ΅Ρ
Π²Π΄ΠΎΡ
Π½ΠΎΠ²ΠΈΠ» Π°Π²ΡΠΎΡΠΎΠ² Π΄ΠΎΠΊΠ»Π°Π΄Π° Π½Π° ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ ΡΠ°Π³ β ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΡΠ°ΠΌΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ, ΠΎΡΠΈΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ Π½Π° ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠ΅ ΡΠΏΠΎΠΌΡΠ½ΡΡΡΡ
ΠΊΠΎΠΌΠΌΡΠ½ΠΈΠΊΠ°ΡΠΈΠΉ. ΠΠ°Π½Π½Π°Ρ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΠΎΡΠ½ΠΎΠ²Π°Π½Π° Π½Π° ΡΠΎΠ²ΠΌΠ΅ΡΡΠ½ΠΎΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΠ°Π»Π°ΠΌΠ±Π΅ΡΠ° ΠΈ ΠΠ°ΠΊΡΠ²Π΅Π»Π»Π°, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Ρ ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Ρ Π² Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ°Π· ΡΠΎΠΊΡΠ°ΡΠΈΡΡ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΡ ΠΎΠ±ΠΌΠ΅Π½Π° Π΄Π°Π½Π½ΡΡ
ΠΌΠ΅ΠΆΠ΄Ρ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠΉ ΠΈ ΠΊΡΡ-ΠΏΠ°ΠΌΡΡΡΡ Π·Π° ΡΡΠ΅Ρ Π±ΠΎΠ»ΡΡΠ΅Π³ΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΉ, ΠΏΡΠΈΡ
ΠΎΠ΄ΡΡΠΈΡ
ΡΡ Π½Π° ΠΎΠ΄Π½Ρ ΡΠ΅ΡΠΎΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΠ°Π»Π°ΠΌΠ±Π΅ΡΠ°, Ρ Π΄ΡΡΠ³ΠΎΠΉ β ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ Π΄Π΅ΡΠ°Π»ΡΠ½ΠΎ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΠΌΠΈ Π·Π° Π΄ΠΎΠ»Π³ΡΡ ΠΈΡΡΠΎΡΠΈΡ FDTD-ΠΌΠ΅ΡΠΎΠ΄Π° ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠΌΠΈ ΠΈ Π³ΠΎΡΠΎΠ²ΡΠΌΠΈ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΡΠΌΠΈ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΡΠΌΠΈ Π·Π°Π΄Π°Π½ΠΈΡ ΠΏΠ°Π΄Π°ΡΡΠ΅ΠΉ Π²ΠΎΠ»Π½Ρ, Π½Π°Π»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΠ³Π»ΠΎΡΠ°ΡΡΠΈΡ
ΡΠ»ΠΎΠ΅Π², ΡΡΠ΅ΡΠ° Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΠΈ ΡΡΠ΅Π΄Ρ ΠΈ Π΄Ρ. Π·Π° ΡΡΠ΅Ρ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠΎΠ² ΡΠ΅ΡΠΎΡΠ½ΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ Yee Π² ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΡΠ΅ΡΠΎΡΠ½ΡΡ ΠΎΠ±Π»Π°ΡΡΡ. A characteristic feature of mathematical modelling at the present stage of development of this scientific branch, according to the authors of this report, is the consideration of the architecture of the computer system not only at the stage of compiling a computer program, but also in the development of a numerical method and the synthesis of a mathematical model. This method significantly broadens the researcher's ability to search for the optimal (in the sense of accelerating computations) mapping of the numerical method to the
mentioned architecture. In this paper, this idea is illustrated by examples of the basic mathematical model of computational electrodynamics and optics, Maxwell's equations, and the FDTD. This modification is based on the joint solution of the dβAlembert and Maxwell equations, which allows one to several times reduce the data exchange rate between the operational and cache memory due to the greater number of arithmetic operations per one grid function in solving the dβAlembert equation, on the other hand, freely use the technologies developed in the long history of the FDTD method and ready-made software implementations for setting the incident wave, imposing the absorbing layers, taking into account the dispersion of the medium and others.Π Π°Π±ΠΎΡΠ° Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π° ΠΏΡΠΈ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΠ΅ Π€Π΅Π΄Π΅ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π°Π³Π΅Π½ΡΡΡΠ²Π° Π½Π°ΡΡΠ½ΡΡ
ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΉ (ΡΠΎΠ³Π»Π°ΡΠ΅Π½ΠΈΠ΅ No 007-ΠΠ/Π§3363/26) ΠΈ Π³ΡΠ°Π½ΡΠ° Π Π€Π€Π 16-47-630560-p_a
Acceleration of calculations using block algorithms for the difference solution of the heat equation
Π£ΡΠ΅Ρ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ Π°ΡΡ
ΠΈΡΠ΅ΠΊΡΡΡΡ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎΠΉ Π²ΡΡΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΏΡΠΈ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ΅ Π½ΠΎΠ²ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ° ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π° Π΄Π°Π²Π½ΠΎ ΡΡΠΈΡΠ°Π΅ΡΡΡ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΡΠΌ ΠΏΡΠΈ ΡΠΈΠ½ΡΠ΅Π·Π΅ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΡ
ΠΈ Π²Π΅ΠΊΡΠΎΡΠ½ΡΡ
Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ². Π Π½Π°ΡΡΠΎΡΡΠ΅ΠΉ ΡΠ°Π±ΠΎΡΠ΅ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΡΡΡ ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ Π²ΠΎ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π°ΡΡ
ΠΈΡΠ΅ΠΊΡΡΡΠ½ΡΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠΎΡΠ° Π΅ΡΠ΅ Π½Π° ΡΡΠ°ΠΏΠ΅ ΠΊΠΎΠ½ΡΡΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ°ΠΌΠΎΠ³ΠΎ ΡΠΈΡΠ»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π°, ΠΊΠ°ΠΊ ΡΡΠΎ ΠΊΠΎΠ³Π΄Π°-ΡΠΎ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π»ΠΎΡΡ Π°ΠΊΠ°Π΄Π΅ΠΌΠΈΠΊΠΎΠΌ ΠΡΡΠΈΠ΅ΠΌ ΠΠ²Π°Π½ΠΎΠ²ΠΈΡΠ΅ΠΌ ΠΠ°ΡΡΡΠΊΠΎΠΌ, ΠΎΠ΄Π½Π°ΠΊΠΎ ΡΠ°ΠΊ ΠΈ Π½Π΅ Π·Π°ΠΊΡΠ΅ΠΏΠΈΠ»ΠΎΡΡ Π² ΡΠΈΡΠΎΠΊΠΎΠΉ Π²ΡΡΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅. ΠΠ°Π½Π½Π°Ρ ΠΈΠ΄Π΅Ρ ΠΈΠ»Π»ΡΡΡΡΠΈΡΡΠ΅ΡΡΡ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΡΠΈΠ½ΡΠ΅Π·Π° Π½ΠΎΠ²ΠΎΠΉ ΡΠ°Π·Π½ΠΎΡΡΠ½ΠΎΠΉ ΡΡ
Π΅ΠΌΡ Π΄Π»Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ΅ΠΏΠ»ΠΎΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΎΡΡΠΈ, ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΠΎ ΡΠ²Π»ΡΡΡΠΈΠΌΡΡ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠΌ Π΄Π»Ρ ΠΈΡΠΏΡΡΠ°Π½ΠΈΡ Π½ΠΎΠ²ΡΠ΅ΡΡΠ² Π² ΡΠ΅ΠΎΡΠΈΠΈ ΡΠ°Π·Π½ΠΎΡΡΠ½ΡΡ
ΡΡ
Π΅ΠΌ. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΠΏΠΎΠΌΡΠ½ΡΡΠΎΠΉ Π°ΡΡ
ΠΈΡΠ΅ΠΊΡΡΡΠ½ΠΎΠΉ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ Π²ΡΠ±ΡΠ°Π½Π° ΠΈΠ΅ΡΠ°ΡΡ
ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΡΡΠΊΡΡΡΠ° ΠΏΠ°ΠΌΡΡΠΈ ΠΠΠ, ΠΎΠ±ΡΡΠ»Π°Π²Π»ΠΈΠ²Π°ΡΡΠ°Ρ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΌΠΌΡΠ½ΠΈΠΊΠ°ΡΠΈΠΎΠ½Π½ΡΡ
ΠΈΠ·Π΄Π΅ΡΠΆΠ΅ΠΊ Π΄Π°ΠΆΠ΅ ΠΏΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π°ΠΏΠΏΠ°ΡΠ°ΡΠ½ΠΎΠ³ΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΡΠΎΠΊΠ° Π΄Π»Ρ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ ΡΠ°ΡΡΠ΅ΡΠΎΠ². Π£ΡΠ΅Ρ Π΄Π°Π½Π½ΠΎΠΉ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ Π² Π²ΡΡΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Π°Π»Π³Π΅Π±ΡΠ΅ ΡΠ²ΡΠ·ΡΠ²Π°ΡΡ Ρ Π±Π»ΠΎΡΠ½ΡΠΌΠΈ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ°ΠΌΠΈ, Π² ΡΠ΅ΠΎΡΠΈΠΈ ΡΠ°Π·Π½ΠΎΡΡΠ½ΡΡ
ΡΡ
Π΅ΠΌ β Ρ ΠΏΡΠΈΠ΅ΠΌΠΎΠΌ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ Β«tilingΒ». ΠΠ΄Π½Π°ΠΊΠΎ Π΄Π»Ρ Π΄Π²ΡΡ
ΡΠ»ΠΎΠΉΠ½ΡΡ
ΡΠ°Π·Π½ΠΎΡΡΠ½ΡΡ
ΡΡ
Π΅ΠΌ Π±Π»ΠΎΡΠ½ΡΡ
Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅ΡΠΎΡΠ½ΡΡ
ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π΄ΠΎ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΠΌΠΎΠΉ ΡΠ°Π±ΠΎΡΡ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ Π½Π΅ Π±ΡΠ»ΠΎ Π² ΡΠΈΠ»Ρ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ Π±Π»ΠΎΡΠ½ΡΡ
Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ ΠΏΠΎ ΡΡΡΠ΅ΡΡΠ²ΡΡΡΠΈΠΌ ΡΡ
Π΅ΠΌΠ°ΠΌ. ΠΠ»Ρ Π²ΠΎΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΡΡΠΎΠ³ΠΎ ΠΏΡΠΎΠ±Π΅Π»Π° Π°Π²ΡΠΎΡΡ ΠΏΡΠ΅Π΄Π»Π°Π³Π°ΡΡ Π½ΠΎΠ²ΡΠΉ ΠΏΡΠΈΠ΅ΠΌ ΠΊΠΎΠ½ΡΡΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π΄Π²ΡΡ
ΡΠ»ΠΎΠΉΠ½ΡΡ
ΡΠ°Π·Π½ΠΎΡΡΠ½ΡΡ
ΡΡ
Π΅ΠΌ ΠΈ ΡΠΌΠ΅ΡΠ°Π½Π½ΡΡ ΡΡ
Π΅ΠΌΡ ΡΠΎ ΡΠ΄Π²ΠΈΠ³ΠΎΠΌ ΠΊΠ°ΠΊ ΠΏΡΠΈΠΌΠ΅Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΡΠΎΠ³ΠΎ ΠΏΡΠΈΠ΅ΠΌΠ°. Π Ρ
ΠΎΠ΄Π΅ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠΎΠ² Π΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΡΠ΅ΡΡΡ ΠΏΡΡΠΈΠΊΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ°ΡΡΠ΅ΡΠΎΠ² ΠΏΠΎ ΡΠ°ΠΊΠΎΠΉ ΡΡ
Π΅ΠΌΠ΅ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ²Π½ΠΎΠΉ ΠΏΡΠΈ ΡΠΎΠΉ ΠΆΠ΅ Π²ΡΡΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΠΈ. In this paper, proposing to take into account the architectural features of the processor at the stage of constructing the numerical method itself. This idea is illustrating by the example of the synthesis of a new difference scheme for the heat conduction equation, which has traditionally been the object of testing innovations in the theory of difference schemes. Architectural feature hierarchical structure of computer memory chosen causes the appearance of communication costs even when using a single hardware computational flow for organizing calculations. Accounting for this feature in computational linear algebra is associated with block algorithms. Accounting for this feature in the theory of difference schemes is associated with the technique of programming "tiling". However, for two-layer difference schemes of block algorithms for solving grid equations, prior to the proposed work, it was not known due to the impossibility of organizing block calculations using existing schemes. The authors propose a new method of constructing two-layer difference schemes and a mixed scheme with a shift as an example of the application of this method. In the course of the experiments, a fivefold acceleration of calculations according to this scheme is demonstrated relative to the traditional explicit, with the same computational complexity.Π Π°Π±ΠΎΡΠ° Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π° ΠΏΡΠΈ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΠ΅ Π³ΡΠ°Π½ΡΠ° Π Π€Π€Π 19-07-00423 Π