304 research outputs found

    Anomalies of the infrared-active phonons in underdoped YBCO as an evidence for the intra-bilayer Josephson effect

    Full text link
    The spectra of the far-infrared c-axis conductivity of underdoped YBCO crystals exhibit dramatic changes of some of the phonon peaks when going from the normal to the superconducting state. We show that the most striking of these anomalies can be naturally explained by changes of the local fields acting on the ions arising from the onset of inter- and intra-bilayer Josephson effects.Comment: Revtex, epsf, 6 pages, 3 figures encapsulated in tex

    Optical manipulation of a single Mn spin in a CdTe-based quantum dot

    Full text link
    A system of two coupled CdTe quantum dots, one of them containing a single Mn ion, was studied in continuous wave and modulated photoluminescence, photoluminescence excitation, and photon correlation experiments. Optical writing of information in the spin state of the Mn ion has been demonstrated, using orientation of the Mn spin by spin-polarized carriers transferred from the neighbor quantum dot. Mn spin orientation time values from 20 ns to 100 ns were measured, depending on the excitation power. Storage time of the information in the Mn spin was found to be enhanced by application of a static magnetic field of 1 T, reaching hundreds of microseconds in the dark. Simple rate equation models were found to describe correctly static and dynamical properties of the system.Comment: 4 pages, 3 figure

    Microphotoluminescence study of disorder in ferromagnetic (Cd,Mn)Te quantum well

    Full text link
    Microphotoluminescence mapping experiments were performed on a modulation doped (Cd,Mn)Te quantum well exhibiting carrier induced ferromagnetism. The zero field splitting that reveals the presence of a spontaneous magnetization in the low-temperature phase, is measured locally; its fluctuations are compared to those of the spin content and of the carrier density, also measured spectroscopically in the same run. We show that the fluctuations of the carrier density are the main mechanism responsible for the fluctuations of the spontaneous magnetization in the ferromagnetic phase, while those of the Mn spin density have no detectable effect at this scale of observation.Comment: 4 pages, 3 figure

    Excitonic giant Zeeman effect in GaN:Mn^3+

    Full text link
    We describe a direct observation of the excitonic giant Zeeman splitting in (Ga,Mn)N, a wide-gap III-V diluted magnetic semiconductor. Reflectivity and absorption spectra measured at low temperatures display the A and B excitons, with a shift under magnetic field due to s,p-d exchange interactions. Using an excitonic model, we determine the difference of exchange integrals between Mn^3+ and free carriers in GaN, N_0(alpha-beta)=-1.2 +/- 0.2 eV. Assuming a reasonable value of alpha, this implies a positive sign of beta which corresponds to a rarely observed ferromagnetic interaction between the magnetic ions and the holes.Comment: 4 pages, 4 figure
    • …
    corecore