29 research outputs found

    Solving fully fuzzy polynomials using feed-back neural networks

    Get PDF
    Recently, there has been a considerable amount of interest and practice in solving many problems of several applied fields by fuzzy polynomials. In this paper, we have designed an artificial fuzzified feed-back neural network. With this design, we are able to find a solution of fully fuzzy polynomial with degree n. This neural network can get a fuzzy vector as an input, and calculates its corresponding fuzzy output. It is clear that the input–output relation for each unit of fuzzy neural network is defined by the extension principle of Zadeh. In this work, a cost function is also defined for the level sets of fuzzy output and fuzzy target. Next a learning algorithm based on the gradient descent method will be defined that can adjust the fuzzy connection weights. Finally, our approach is illustrated by computer simulations on numerical examples. It is worthwhile to mention that application of this method in fluid mechanics has been shown by an example

    On the Legendre differential equation with uncertainties at the regular-singular point 1: Lp random power series solution and approximation of its statistical moments

    Full text link
    "This is the peer reviewed version of the following article: Calatayud, J, Cortés, J-;C, Jornet, M. On the Legendre differential equation with uncertainties at the regular-singular point 1: Lp random power series solution and approximation of its statistical moments. Comp and Math Methods. 2019; 1:e1045. https://doi.org/10.1002/cmm4.1045 , which has been published in final form at https://doi.org/10.1002/cmm4.1045. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] In this paper, we construct two linearly independent response processes to the random Legendre differential equation on (-1,1)U(1,3), consisting of Lp(omega) convergent random power series around the regular¿singular point 1. A theorem on the existence and uniqueness of Lp(omega) solution to the random Legendre differential equation on the intervals (-1,1) and (1,3) is obtained. The hypotheses assumed are simple: initial conditions in Lp(omega) and random input A in L infinite(omega) (this is equivalent to A having absolute moments that grow at most exponentially). Thus, this paper extends the deterministic theory to a random framework. Uncertainty quantification for the solution stochastic process is performed by truncating the random series and taking limits in Lp(omega). In the numerical experiments, we approximate its expectation and variance for certain forms of the differential equation. The reliability of our approach is compared with Monte Carlo simulations and generalized polynomial chaos expansions.Spanish Ministerio de Economía y Competitividad, Grant/Award Number: MTM2017-89664-P; Programa de Ayudas de Investigación y Desarrollo; Universitat Politècnica de ValènciaCalatayud-Gregori, J.; Cortés, J.; Jornet-Sanz, M. (2019). On the Legendre differential equation with uncertainties at the regular-singular point 1: Lp random power series solution and approximation of its statistical moments. Computational and Mathematical Methods. 1(4):1-12. https://doi.org/10.1002/cmm4.1045S11214Calbo, G., Cortés, J.-C., Jódar, L., & Villafuerte, L. (2011). Solving the random Legendre differential equation: Mean square power series solution and its statistical functions. Computers & Mathematics with Applications, 61(9), 2782-2792. doi:10.1016/j.camwa.2011.03.045Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061Wong, E., & Hajek, B. (1985). Stochastic Processes in Engineering Systems. Springer Texts in Electrical Engineering. doi:10.1007/978-1-4612-5060-9Nouri, K., & Ranjbar, H. (2014). Mean Square Convergence of the Numerical Solution of Random Differential Equations. Mediterranean Journal of Mathematics, 12(3), 1123-1140. doi:10.1007/s00009-014-0452-8Lupulescu, V., O’Regan, D., & ur Rahman, G. (2014). Existence results for random fractional differential equations. Opuscula Mathematica, 34(4), 813. doi:10.7494/opmath.2014.34.4.813Villafuerte, L., & Chen-Charpentier, B. M. (2012). A random differential transform method: Theory and applications. Applied Mathematics Letters, 25(10), 1490-1494. doi:10.1016/j.aml.2011.12.033Licea, J. A., Villafuerte, L., & Chen-Charpentier, B. M. (2013). Analytic and numerical solutions of a Riccati differential equation with random coefficients. Journal of Computational and Applied Mathematics, 239, 208-219. doi:10.1016/j.cam.2012.09.040Lang, S. (1997). Undergraduate Analysis. Undergraduate Texts in Mathematics. doi:10.1007/978-1-4757-2698-5Cortés, J.-C., Romero, J.-V., Roselló, M.-D., Santonja, F.-J., & Villanueva, R.-J. (2013). Solving Continuous Models with Dependent Uncertainty: A Computational Approach. Abstract and Applied Analysis, 2013, 1-10. doi:10.1155/2013/983839Calatayud, J., Cortés, J. C., Jornet, M., & Villanueva, R. J. (2018). Computational uncertainty quantification for random time-discrete epidemiological models using adaptive gPC. Mathematical Methods in the Applied Sciences, 41(18), 9618-9627. doi:10.1002/mma.531

    A mean square chain rule and its application in solving the random Chebyshev differential equation

    Full text link
    [EN] In this paper a new version of the chain rule for calculat- ing the mean square derivative of a second-order stochastic process is proven. This random operational calculus rule is applied to construct a rigorous mean square solution of the random Chebyshev differential equation (r.C.d.e.) assuming mild moment hypotheses on the random variables that appear as coefficients and initial conditions of the cor- responding initial value problem. Such solution is represented through a mean square random power series. Moreover, reliable approximations for the mean and standard deviation functions to the solution stochastic process of the r.C.d.e. are given. Several examples, that illustrate the theoretical results, are included.This work was completed with the support of our TEX-pert.Cortés, J.; Villafuerte, L.; Burgos-Simon, C. (2017). A mean square chain rule and its application in solving the random Chebyshev differential equation. Mediterranean Journal of Mathematics. 14(1):14-35. https://doi.org/10.1007/s00009-017-0853-6S1435141Calbo, G., Cortés, J.C., Jódar, L., Villafuerte, L.: Analytic stochastic process solutions of second-order random differential equations. Appl. Math. Lett. 23(12), 1421–1424 (2010). doi: 10.1016/j.aml.2010.07.011El-Tawil, M.A., El-Sohaly, M.: Mean square numerical methods for initial value random differential equations. Open J. Discret. Math. 1(1), 164–171 (2011). doi: 10.4236/ojdm.2011.12009Khodabin, M., Maleknejad, K., Rostami, K., Nouri, M.: Numerical solution of stochastic differential equations by second order Runge Kutta methods. Math. Comp. Model. 59(9–10), 1910–1920 (2010). doi: 10.1016/j.mcm.2011.01.018Santos, L.T., Dorini, F.A., Cunha, M.C.C.: The probability density function to the random linear transport equation. Appl. Math. Comput. 216(5), 1524–1530 (2010). doi: 10.1016/j.amc.2010.03.001González Parra, G., Chen-Charpentier, B.M., Arenas, A.J.: Polynomial Chaos for random fractional order differential equations. Appl. Math. Comput. 226(1), 123–130 (2014). doi: 10.1016/j.amc.2013.10.51El-Beltagy, M.A., El-Tawil, M.A.: Toward a solution of a class of non-linear stochastic perturbed PDEs using automated WHEP algorithm. Appl. Math. Model. 37(12–13), 7174–7192 (2013). doi: 10.1016/j.apm.2013.01.038Nouri, K., Ranjbar, H.: Mean square convergence of the numerical solution of random differential equations. Mediterran. J. Math. 12(3), 1123–1140 (2015). doi: 10.1007/s00009-014-0452-8Villafuerte, L., Braumann, C.A., Cortés, J.C., Jódar, L.: Random differential operational calculus: theory and applications. Comp. Math. Appl. 59(1), 115–125 (2010). doi: 10.1016/j.camwa.2009.08.061Øksendal, B.: Stochastic differential equations: an introduction with applications, 6th edn. Springer, Berlin (2007)Soong, T.T.: Random differential equations in science and engineering. Academic Press, New York (1973)Wong, B., Hajek, B.: Stochastic processes in engineering systems. Springer Verlag, New York (1985)Arnold, L.: Stochastic differential equations. Theory and applications. John Wiley, New York (1974)Cortés, J.C., Jódar, L., Camacho, J., Villafuerte, L.: Random Airy type differential equations: mean square exact and numerical solutions. Comput. Math. Appl. 60(5), 1237–1244 (2010). doi: 10.1016/j.camwa.2010.05.046Calbo, G., Cortés, J.C., Jódar, L.: Random Hermite differential equations: mean square power series solutions and statistical properties. Appl. Math. Comp. 218(7), 3654–3666 (2011). doi: 10.1016/j.amc.2011.09.008Calbo, G., Cortés, J.C., Jódar, L., Villafuerte, L.: Solving the random Legendre differential equation: Mean square power series solution and its statistical functions. Comp. Math. Appl. 61(9), 2782–2792 (2010). doi: 10.1016/j.camwa.2011.03.045Cortés, J.C., Jódar, L., Company, R., Villafuerte, L.: Laguerre random polynomials: definition, differential and statistical properties. Utilit. Math. 98, 283–293 (2015)Cortés, J.C., Jódar, L., Villafuerte, L.: Mean square solution of Bessel differential equation with uncertainties. J. Comp. Appl. Math. 309, 383–395 (2017). doi: 10.1016/j.cam.2016.01.034Golmankhaneh, A.K., Porghoveh, N.A., Baleanu, D.: Mean square solutions of second-order random differential equations by using homotopy analysis method. Romanian Reports Physics 65(2), 1237–1244 (2013)Khalaf, S.L.: Mean square solutions of second-order random differential equations by using homotopy perturbation method. Int. Math. Forum 6(48), 2361–2370 (2011)Khudair, A.R., Ameen, A.A., Khalaf, S.L.: Mean square solutions of second-order random differential equations by using Adomian decomposition method. Appl. Math. Sci. 5(49), 2521–2535 (2011)Agarwal, R.P., O’Regan, D.: Ordinary and partial differential equations. Springer, New York (2009
    corecore