2 research outputs found

    Passivation of Iodine Vacancies of Perovskite Films By Reducing Iodine To Triiodid Anions For High-Performance Photovoltaics

    No full text
    Inverted perovskite solar cells (PSCs) exhibit great potential in large-scale fabrication due to the low-temperature manufacturing process and low cost compared to normal PSCs. However, defects at the surface and grain boundaries (GBs) of perovskite films, such as iodine vacancies, lead to low efficiency and poor stability. Herein, we report a strategy to passivate the defects in situ with tetrabutylammonium chloride (TABCl). Both the surface defects and GB defects are passivated after perovskite film growth. Moreover, TABCl modifies iodine vacancies by reducing I2 to iodide ions, leading to a decrease in charge recombination in the films and enhanced device performance. The power conversion efficiency (PCE) of devices increases from 18.52% to 20.36 % by TBACl modification, and TBACl also reduces the Voc loss in the PSCs. Meanwhile, TBACl enhances the UV light stability of devices tested by continuous UV light irradiation due to the decreased defects by TBACl. The PSCs could maintain over 90% PCE under continuous UV light irradiation for 450 min. This work not only presents a method to effectively passivate the defects in situ including the surface defects and GB defects but also demonstrates a novel strategy to modify the iodine vacancies by the reducibility of TBACl. In addition, the reducibility of TBACl suppresses the degradation of perovskite films, leading to improved stability

    FAPbI\u3csub\u3e3\u3c/sub\u3e Perovskite Films Prepared by Solvent Self-Volatilization for Photovoltaic Applications

    No full text
    Developing a simple method to synthesize the perovskite layer without the antisolvent technique can facilitate the industrial production of perovskite solar cells (PSCs). Limited progress has been made for the antisolvent-free method on formamidinium lead triiodide perovskite layers because of the phase stability issue. Here, we use N-methyl pyrrolidone (NMP) as an additive to inhibit the nonperovskite phase of FAPbI3 to fabricate the formamidinium iodide (FAI)–PbI2–NMP intermediate phase via the self-volatilization of volatile solvent 2-methoxyethanol instead of the traditional antisolvent method. The high-quality pure α phase of FAPbI3 films is obtained by phase transition via annealing. The photovoltaic properties of the perovskite films affected by different NMP amounts are studied. The corresponding PSCs show a PCE of 20.1% compared to 15.6% for the PSCs fabricated with the classical antisolvent technique. The unencapsulated devices exhibit ∼75% efficiency of their initial PCE values after 35 days of storage. This method can be used in the scalable production of PSCs because of high reproducibility and easy operation
    corecore