2 research outputs found

    Signature of strong atom-cavity interaction on critical coupling

    Full text link
    We study a critically coupled cavity doped with resonant atoms with metamaterial slabs as mirrors. We show how resonant atom-cavity interaction can lead to a splitting of the critical coupling dip. The results are explained in terms of the frequency and lifetime splitting of the coupled system.Comment: 8 pages, 5 figure

    The role of absorption and dispersion in resonant tunnelling through a negative index medium

    No full text
    We study resonant tunneling through a layered medium with a passive negative index medium (NIM) slab as a constituent layer. Using a causal model for susceptibilities with the parameters of a recently reported metamaterial [G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, S. Linden, Opt. Lett. 31, 1800 (2006)] we show that resonant tunnelling and the associated delay are mostly suppressed. This is in sharp contrast with the naive approach of retaining phase velocity dispersion with arbitrary low losses, predicting sharp resonances with large associated delays. This is shown to be a nontrivial issue because of the necessity of losses for NIM behaviour, while their presence spoils the quality factor of the resonant devices
    corecore