31 research outputs found

    Effect of contact induced states on minimum conductivity in graphene

    Full text link
    The objective of this paper is to point out that contact induced states can help explain the structure dependence of the minimum conductivity observed experimentally even if the samples were purely ballistic. Contact induced states are similar to the well-known metal induced gap states (MIGS) in metal-semiconductor Schottky junctions, which typically penetrate only a few atomic lengths into the semiconductor, while the depth of penetration decreases with increasing band gap. However, in graphene we find that these states penetrate a much longer distance of the order of the width of the contacts. As a result, ballistic graphene samples with a length less than their width can exhibit a resistance proportional to length that is not Ohmic in origin, but arises from a reduced role of contact-induced states. While actual samples are probably not ballistic and involve scattering processes, our results show that these contact induced effects need to be taken into account in interpreting experiments and minimum conductivity depends strongly on the structure and configuration (two- vs. four-terminal) used.Comment: 4 pages, 4 figure

    Tunable Band Structure Effects on Ballistic Transport in Graphene Nanoribbons

    Full text link
    Graphene nanoribbons (GNR) in mutually perpendicular electric and magnetic fields are shown to exhibit dramatic changes in their band structure and electron transport properties. A strong electric field across the ribbon induces multiple chiral Dirac points, closing the semiconducting gap in armchair GNR's. A perpendicular magnetic field induces partially formed Landau levels as well as dispersive surface-bound states. Each of the applied fields on its own preserves the even symmetry Ek=E−kE_{k} = E_{-k} of the subband dispersion. When applied together, they reverse the dispersion parity to be odd and gives Ee,k=−Eh,−kE_{e,k} = -E_{h,-k} and mix the electron and hole subbands within the energy range corresponding to the change in potential across the ribbon. This leads to oscillations of the ballistic conductance within this energy range

    Conductance of graphene nanoribbon junctions and the tight binding model

    Get PDF
    Planar carbon-based electronic devices, including metal/semiconductor junctions, transistors and interconnects, can now be formed from patterned sheets of graphene. Most simulations of charge transport within graphene-based electronic devices assume an energy band structure based on a nearest-neighbour tight binding analysis. In this paper, the energy band structure and conductance of graphene nanoribbons and metal/semiconductor junctions are obtained using a third nearest-neighbour tight binding analysis in conjunction with an efficient nonequilibrium Green’s function formalism. We find significant differences in both the energy band structure and conductance obtained with the two approximations

    Kinetic investigation on extrinsic spin Hall effect induced by skew scattering

    Full text link
    The kinetics of the extrinsic spin Hall conductivity induced by the skew scattering is performed from the fully microscopic kinetic spin Bloch equation approach in (001)(001) GaAs symmetric quantum well. In the steady state, the extrinsic spin Hall current/conductivity vanishes for the linear-k\mathbf k dependent spin-orbit coupling and is very small for the cubic-k\mathbf k dependent spin-orbit coupling. The spin precession induced by the Dresselhaus/Rashba spin-orbit coupling plays a very important role in the vanishment of the extrinsic spin Hall conductivity in the steady state. An in-plane spin polarization is induced by the skew scattering, with the help of the spin-orbit coupling. This spin polarization is very different from the current-induced spin polarization.Comment: 5 pages, 2 figures, to be published in JPC

    How close can one approach the Dirac point in graphene experimentally?

    Full text link
    The above question is frequently asked by theorists who are interested in graphene as a model system, especially in context of relativistic quantum physics. We offer an experimental answer by describing electron transport in suspended devices with carrier mobilities of several 10^6 cm^2V^-1s^-1 and with the onset of Landau quantization occurring in fields below 5 mT. The observed charge inhomogeneity is as low as \approx10^8 cm^-2, allowing a neutral state with a few charge carriers per entire micron-scale device. Above liquid helium temperatures, the electronic properties of such devices are intrinsic, being governed by thermal excitations only. This yields that the Dirac point can be approached within 1 meV, a limit currently set by the remaining charge inhomogeneity. No sign of an insulating state is observed down to 1 K, which establishes the upper limit on a possible bandgap

    Photocurrent imaging and efficient photon detection in a graphene transistor

    Full text link
    We measure the channel potential of a graphene transistor using a scanning photocurrent imaging technique. We show that at a certain gate bias, the impact of the metal on the channel potential profile extends into the channel for more than 1/3 of the total channel length from both source and drain sides, hence most of the channel is affected by the metal. The potential barrier between the metal controlled graphene and bulk graphene channel is also measured at various gate biases. As the gate bias exceeds the Dirac point voltage, VDirac, the original p-type graphene channel turns into a p-n-p channel. When light is focused on the p-n junctions, an impressive external responsivity of 0.001 A/W is achieved, given that only a single layer of atoms are involved in photon detection.Comment: 24 pages, 4 figure
    corecore