159 research outputs found

    Natural killer cell reduction and uteroplacental vasculopathy

    Get PDF
    Uterine natural killer cells are important for uteroplacental development and pregnancy maintenance. Their role in pregnancy disorders, such as preeclampsia, is unknown. We reduced the number of natural killer cells by administering rabbit anti-asialo GM1 antiserum in an established rat preeclamptic model (female human angiotensinogen×male human renin) and evaluated the effects at the end of pregnancy (day 21), compared with preeclamptic control rats receiving normal rabbit serum. In 100% of the antiserum-treated, preeclamptic rats (7/7), we observed highly degenerated vessel cross sections in the mesometrial triangle at the end of pregnancy. This maternal uterine vasculopathy was characterized by a total absence of nucleated/living cells in the vessel wall and perivascularly and prominent presence of fibrosis. Furthermore, there were no endovascular trophoblast cells within the vessel lumen. In the control, normal rabbit serum-treated, preeclamptic rats, only 20% (1/5) of the animals displayed such vasculopathy. We confirmed the results in healthy pregnant wild-type rats: after anti-asialo GM1 treatment, 67% of maternal rats displayed vasculopathy at the end of pregnancy compared with 0% in rabbit serum-treated control rats. This vasculopathy was associated with a significantly lower fetal weight in wild-type rats and deterioration of fetal brain/liver weight ratio in preeclamptic rats. Anti-asialo GM1 application had no influence on maternal hypertension and albuminuria during pregnancy. Our results show a new role of natural killer cells during hypertensive pregnancy in maintaining vascular integrity. In normotensive pregnancy, this integrity seems important for fetal growth

    Ultrafast Structural Dynamics of BlsA, a Photoreceptor from the Pathogenic Bacterium Acinetobacter baumannii

    Get PDF
    Acinetobacter baumannii is an important human pathogen that can form biofilms and persist under harsh environmental conditions. Biofilm formation and virulence are modulated by blue light, which is thought to be regulated by a BLUF protein, BlsA. To understand the molecular mechanism of light sensing, we have used steady-state and ultrafast vibrational spectroscopy to compare the photoactivation mechanism of BlsA to the BLUF photosensor AppA from Rhodobacter sphaeroides. Although similar photocycles are observed, vibrational data together with homology modeling identify significant differences in the β5 strand in BlsA caused by photoactivation, which are proposed to be directly linked to downstream signaling

    CD74-downregulation of placental macrophage-trophoblastic interactions in preeclampsia

    Get PDF
    Rationale: MWe hypothesized that Cluster of differentiation 74 (CD74) downregulation on placental macrophages, leading to altered macrophage-trophoblast interaction, is involved in preeclampsia. Objective: Preeclamptic pregnancies feature hypertension, proteinuria and placental anomalies. Feto-placental macrophages regulate villous trophoblast differentiation during placental development. Disturbance of this well-balanced regulation can lead to pathological pregnancies. Methods and Results: We performed whole genome expression analysis of placental tissue. CD74 was one of the most downregulated genes in placentas from preeclamptic women. By RT-PCR, we confirmed this finding in early onset (<34 gestational week, n=26) and late onset (≥34 gestational week, n=24) samples from preeclamptic women, compared to healthy pregnant controls (n=28). CD74 protein levels were analyzed by Western blot and flow cytometry. We identified placental macrophages to express CD74 by immunofluorescence, flow cytometry and RT-PCR. CD74-positive macrophages were significantly reduced in preeclamptic placentas compared to controls. CD74-silenced macrophages showed that the adhesion molecules ALCAM, ICAM4, and Syndecan-2, as well as macrophage adhesion to trophoblasts were diminished. Naïve and activated macrophages lacking CD74 showed a shift towards a pro-inflammatory signature with an increased secretion of TNF , CCL5, and MCP-1, when co-cultured with trophoblasts compared to control macrophages. Trophoblasts stimulated by these factors express more CYP2J2, sFlt1, TNF and IL-8. CD74-knockout mice showed disturbed placental morphology, reduced junctional zone, smaller placentas and impaired spiral artery remodeling with fetal growth restriction. Conclusions: CD74 downregulation in placental macrophages is present in preeclampsia. CD74 downregulation leads to altered macrophage activation towards a pro-inflammatory signature and a disturbed crosstalk with trophoblasts

    Pest categorisation of Coniella castaneicola

    Get PDF
    The European Commission requested the EFSA Panel on Plant Health to conduct a pest categorisation of Coniella castaneicola (Ellis &amp; Everh) Sutton, following commodity risk assessments of Acer campestre, A. palmatum, A. platanoides, A. pseudoplatanus, Quercus petraea and Q. robur plants from the UK, in which C. castaneicola was identified as a pest of possible concern to the EU. When first described, Coniella castaneicola was a clearly defined fungus of the family Schizoparmaceae, but due to lack of a curated type-derived DNA sequence, current identification based only on DNA sequence is uncertain and taxa previously reported to be this fungus based on molecular identification must be confirmed. The uncertainty on the reported identification of this species translates into uncertainty on all the sections of this categorisation. The fungus has been reported on several plant species associated with leaf spots, leaf blights and fruit rots, and as an endophyte in asymptomatic plants. The species is reported from North and South America, Africa, Asia, non-EU Europe and Oceania. Coniella castaneicola is not known to occur in the EU. However, there is a key uncertainty on its presence and geographical distribution worldwide and in the EU due to its endophytic nature, the lack of systematic surveys and possible misidentifications. Coniella castaneicola is not included in Commission Implementing Regulation (EU) 2019/2072 and there are no interceptions in the EU. Plants for planting, fresh fruits and soil and other growing media associated with infected plant debris are the main pathways for its entry into the EU. Host availability and climate suitability in parts of the EU are favourable for the establishment and spread of the fungus. Based on the scarce information available, the introduction and spread of C. castaneicola in the EU is not expected to cause substantial impacts, with a key uncertainty. Phytosanitary measures are available to prevent its introduction and spread in the EU. Because of lack of documented impacts, Coniella castaneicola does not satisfy all the criteria that are within the remit of EFSA to assess for this species to be regarded as potential Union quarantine pest

    Pest categorisation of Pyrrhoderma noxium

    Get PDF
    Following the commodity risk assessment of bonsai plants (Pinus parviflora grafted on Pinus thunbergii) from China performed by EFSA, the EFSA Plant Health Panel performed a pest categorisation of Pyrrhoderma noxium, a clearly defined plant pathogenic basidiomycete fungus of the order Hymenochaetales and the family Hymenochaetaceae. The pathogen is considered as opportunistic and has been reported on a wide range of hosts, mainly broad-leaved and coniferous woody plants, causing root rots. In addition, the fungus was reported to live saprophytically on woody substrates and was isolated as an endophyte from a few plant species. This pest categorisation focuses on the hosts that are relevant for the EU (e.g. Citrus, Ficus, Pinus, Prunus, Pyrus, Quercus and Vitis vinifera). Pyrrhoderma noxium is present in Africa, Central and South America, Asia and Oceania. It has not been reported in the EU. Pyrrhoderma noxium is not included in Commission Implementing Regulation (EU) 2019/2072. Plants for planting (excluding seeds), bark and wood of host plants as well as soil and other growing media associated with plant debris are the main pathways for the entry of the pathogen into the EU. Host availability and climate suitability factors occurring in parts of the EU are favourable for the establishment and spread of the pathogen. The introduction and spread of the pathogen into the EU are expected to have an economic and environmental impact in parts of the territory where hosts are present. Phytosanitary measures are available to prevent the introduction and spread of the pathogen into the EU. Pyrrhoderma noxium satisfies all the criteria that are within the remit of EFSA to assess for this species to be regarded as potential Union quarantine pest

    Pest categorisation of Monema flavescens

    Get PDF
    The EFSA Panel on Plant Health performed a pest categorisation of Monema flavescens (Lepidoptera, Limacodidae), following the commodity risk assessment of Acer palmatum plants grafted on A. davidii from China, in which M. flavescens was identified as a pest of possible concern to the European Union. This species can be identified by morphological taxonomic keys and by barcoding. The adults of the overwintering generation emerge from late June to late August. The eggs are laid in groups on the underside of the host-plant leaves, on which the larvae feed throughout their six to eight larval instars. Pupation occurs in ovoid cocoons at the junction between twigs and branches, or on the trunk. Overwintering occurs as fully grown larvae or prepupae in their cocoon. There are one or two generations per year. M. flavescens is polyphagous and feeds on broadleaves; it has been reported on 51 plant species belonging to 24 families. It mainly occurs in Asia (Bhutan, China, the Democratic People's Republic of Korea, Japan, Nepal, the Republic of Korea), Russia (Eastern Siberia) and Taiwan. It is also present in the USA (Massachusetts). The pest's flight capacities are unknown. The main pathway for entry and spread is plants for planting with cocoons attached. This is partially closed by prohibition of some hosts. In several EU member states climatic conditions are conducive for establishment and many host plants are widespread. Introduction of M. flavescens may result in defoliations influencing tree health and forest diversity. The caterpillars also have urticating spines affecting human health. Phytosanitary measures are available to reduce the likelihood of entry, establishment and spread, and there is a definite potential for classical biological control. Recognising that natural enemies prevent M. flavescens being regarded as a pest in Asia, there is uncertainty regarding the magnitude of potential impact in EU depending on the influence of natural enemies. All criteria assessed by EFSA for consideration as a potential quarantine pest are met

    Risk assessment of Phlyctinus callosus for the EU

    Get PDF
    Following a request from the European Commission, the EFSA Panel on Plant Health performed a quantitative risk assessment for the EU of Phlyctinus callosus (Coleoptera: Curculionidae), a polyphagous pest occurring in Australia, New Zealand and South Africa. The current risk assessment focused on potential pathways for entry, the climatic conditions allowing establishment, the expected spread capacity and the impact considering a time horizon of 10 years (2023–2032). The Panel identified the import of apples, cut flowers and table grapes as the most relevant entry pathways. Over the next 10 years, an annual median estimate of approximately 49.5 (90% certainty range, CR, ranging from 4.0 to 881.2) potential P. callosus founder populations are expected. When the probability of establishment is considered and climatic indicators are used to define the areas in the EU where establishment is possible, the model estimated a median of 1 founder population every 1.3 years (90% CR: 1 every 30.8 years to 23.3 per year) in the scenario where the areas are defined by the union of all the climatic indicators and 1 founder population every 11.9 years (90% CR: 1 every 256.6 years to 2.5 per year) in the scenario where establishment is possible only in the areas defined by the climatic indicator of minimum soil temperature. The estimated number of founder populations per year is mostly driven by the probability of establishment in the rural areas, infestation rate in table grapes and the probability of transfer to a suitable host in the rural area. The risk of entry for cut flowers and apples is substantially lower than the risk from the table grapes. If such founder populations were to establish, P. callosus is estimated to spread by natural dispersal and common agricultural practices at a rate of 15.5 m/year (90% CR 5.1–46.8 m/year) after a lag phase of 4.0 years (90% CR 1.3–8.7 years). The impact, expressed as percentage loss of the production directly attributable to P. callosus in the areas where establishment is possible and assuming farmers do not apply specific control measures was estimated at 0.5% (90% CR 0.01%–2.8%) for cut flowers/foliage, 5.2% (90% CR 2.2%–11.7%) for apples and 2% (90% CR 1.3%–5.2%) for table grapes. Options for risk reduction are discussed, but their effectiveness is not quantified
    • …
    corecore