21 research outputs found
Searching a bitstream in linear time for the longest substring of any given density
Given an arbitrary bitstream, we consider the problem of finding the longest
substring whose ratio of ones to zeroes equals a given value. The central
result of this paper is an algorithm that solves this problem in linear time.
The method involves (i) reformulating the problem as a constrained walk through
a sparse matrix, and then (ii) developing a data structure for this sparse
matrix that allows us to perform each step of the walk in amortised constant
time. We also give a linear time algorithm to find the longest substring whose
ratio of ones to zeroes is bounded below by a given value. Both problems have
practical relevance to cryptography and bioinformatics.Comment: 22 pages, 19 figures; v2: minor edits and enhancement
Password-based group key exchange in a constant number of rounds
Abstract. With the development of grids, distributed applications are spread across multiple computing resources and require efficient security mechanisms among the processes. Although protocols for authenticated group Diffie-Hellman key exchange protocols seem to be the natural mechanisms for supporting these applications, current solutions are either limited by the use of public key infrastructures or by their scalability, requiring a number of rounds linear in the number of group members. To overcome these shortcomings, we propose in this paper the first provably-secure password-based constant-round group key exchange protocol. It is based on the protocol of Burmester and Desmedt and is provably-secure in the random-oracle and ideal-cipher models, under the Decisional Diffie-Hellman assumption. The new protocol is very efficient and fully scalable since it only requires four rounds of communication and four multi-exponentiations per user. Moreover, the new protocol avoids intricate authentication infrastructures by relying on passwords for authentication.
New Anonymity Notions for Identity-Based Encryption
The original publication is available at www.springerlink.comInternational audienceIdentity-based encryption is a very convenient tool to avoid key management. Recipient-privacy is also a major concern nowadays. To combine both, anonymous identity-based encryption has been proposed. This paper extends this notion to stronger adversaries (the authority itself). We discuss this new notion, together with a new kind of non-malleability with respect to the identity, for several existing schemes. Inter- estingly enough, such a new anonymity property has an independent application to password-authenticated key exchange. We thus come up with a new generic framework for password-authenticated key exchange, and a concrete construction based on pairings
Semi empirical formula to calculate MSP of relativistic electrons in the range of 940 keV–1020 keV
Universally Composable Password-Based Key Exchange
We propose and realize a definition of security for password-based key exchange within the framework of universal composability (UC), thus providing security guarantees under arbitrary composition with other protocols. In addition, our definition captures some aspects of the problem that were not adequately addressed by most prior notions. For instance, our definition does not assume any underlying probability distribution on passwords, nor does it assume independence between passwords chosen by different parties. We also formulate a definition of password-based secure channels, and show how to realize such channels given any passwordbased key exchange protocol. The password-based key exchange protocol shown here is in the common reference string model and relies on standard number-theoretic assumptions. The components of our protocol can be instantiated to give a relatively efficient solution which is conceivably usable in practice. We also show that it is impossible to satisfy our definition in the “plain ” model (e.g., withou
Smooth Projective Hashing for Conditionally Extractable Commitments
The original publication is available at www.springerlink.comInternational audienceThe notion of smooth projective hash functions was proposed by Cramer and Shoup and can be seen as special type of zero-knowledge proof system for a language. Though originally used as a means to build efficient chosen-ciphertext secure public-key encryption schemes, some variations of the Cramer-Shoup smooth projective hash functions also found applications in several other contexts, such as password-based authenticated key exchange and oblivious transfer. In this paper, we first address the problem of building smooth projective hash functions for more complex languages. More precisely, we show how to build such functions for languages that can be described in terms of disjunctions and conjunctions of simpler languages for which smooth projective hash functions are known to exist. Next, we illustrate how the use of smooth projective hash functions with more complex languages can be efficiently associated to extractable commitment schemes and avoid the need for zero-knowledge proofs. Finally, we explain how to apply these results to provide more efficient solutions to two well-known cryptographic problems: a public-key certification which guarantees the knowledge of the private key by the user without random oracles or zero-knowledge proofs and adaptive security for password-based authenticated key exchange protocols in the universal composability framework with erasures