616 research outputs found
The application of a non-Newtonian rheological equation to low-density polyethylene
A generalized non-Newtonian equation describing the rheology of molten thermoplastics is verified for low-density polyethylenes. The equation is extended to account for both rheological temperature dependency and polyethylene molecular weight dependency. The prediction of the rheology of new polyethylenes without additional experimentation is thus possible
Irregular behaviour of class numbers and Euler-Kronecker constants of cyclotomic fields: the log log log devil at play
Kummer (1851) and, many years later, Ihara (2005) both posed conjectures on
invariants related to the cyclotomic field with a
prime. Kummer's conjecture concerns the asymptotic behaviour of the first
factor of the class number of and Ihara's the positivity
of the Euler-Kronecker constant of (the ratio of the
constant and the residue of the Laurent series of the Dedekind zeta function
at ). If certain standard conjectures in
analytic number theory hold true, then one can show that both conjectures are
true for a set of primes of natural density 1, but false in general.
Responsible for this are irregularities in the distribution of the primes. With
this survey we hope to convince the reader that the apparently dissimilar
mathematical objects studied by Kummer and Ihara actually display a very
similar behaviour.Comment: 20 pages, 1 figure, survey, to appear in `Irregularities in the
Distribution of Prime Numbers - Research Inspired by Maier's Matrix Method',
Eds. J. Pintz and M. Th. Rassia
Use of behavioral economics and social psychology to improve treatment of acute respiratory infections (BEARI): rationale and design of a cluster randomized controlled trial [1RC4AG039115-01] - study protocol and baseline practice and provider characteristics
Background: Inappropriate antibiotic prescribing for nonbacterial infections leads to increases in the costs of care, antibiotic resistance among bacteria, and adverse drug events. Acute respiratory infections (ARIs) are the most common reason for inappropriate antibiotic use. Most prior efforts to decrease inappropriate antibiotic prescribing for ARIs (e.g., educational or informational interventions) have relied on the implicit assumption that clinicians inappropriately prescribe antibiotics because they are unaware of guideline recommendations for ARIs. If lack of guideline awareness is not the reason for inappropriate prescribing, educational interventions may have limited impact on prescribing rates. Instead, interventions that apply social psychological and behavioral economic principles may be more effective in deterring inappropriate antibiotic prescribing for ARIs by well-informed clinicians. Methods/design The Application of Behavioral Economics to Improve the Treatment of Acute Respiratory Infections (BEARI) Trial is a multisite, cluster-randomized controlled trial with practice as the unit of randomization. The primary aim is to test the ability of three interventions based on behavioral economic principles to reduce the rate of inappropriate antibiotic prescribing for ARIs. We randomized practices in a 2 × 2 × 2 factorial design to receive up to three interventions for non-antibiotic-appropriate diagnoses: 1) Accountable Justifications: When prescribing an antibiotic for an ARI, clinicians are prompted to record an explicit justification that appears in the patient electronic health record; 2) Suggested Alternatives: Through computerized clinical decision support, clinicians prescribing an antibiotic for an ARI receive a list of non-antibiotic treatment choices (including prescription options) prior to completing the antibiotic prescription; and 3) Peer Comparison: Each provider’s rate of inappropriate antibiotic prescribing relative to top-performing peers is reported back to the provider periodically by email. We enrolled 269 clinicians (practicing attending physicians or advanced practice nurses) in 49 participating clinic sites and collected baseline data. The primary outcome is the antibiotic prescribing rate for office visits with non-antibiotic-appropriate ARI diagnoses. Secondary outcomes will examine antibiotic prescribing more broadly. The 18-month intervention period will be followed by a one year follow-up period to measure persistence of effects after interventions cease. Discussion The ongoing BEARI Trial will evaluate the effectiveness of behavioral economic strategies in reducing inappropriate prescribing of antibiotics. Trials registration ClinicalTrials.gov: NCT0145494
Evaluating the Impact of Interventions by a Multidisciplinary Pediatric Behavioral Health Medication Initiative Workgroup on Medication Prescribing Trends in a Medicaid Population
In 2011, the U.S. Government Accountability Office (GAO) reported foster and non-foster children in the MassHealth, Massachusetts Medicaid program, exhibited the highest rate of behavioral health medication (BHM) utilization, with 49.3% of all Medicaid children being prescribed a psychotropic medication, and 39.1% of children in foster care prescribed these medications.
The MassHealth Pharmacy Program, which is managed by UMass Medical School, implemented a PBHMI Workgroup in November 2014 with the collaboration of the Department of Children and Families and the Department of Mental Health.
The workgroup proactively requires prior authorization (PA) for specific medications or combinations of BHMs prescribed to members less than 18 years of age. Interventions include telephonic prescriber outreach by a child/adolescent psychiatrist to discuss opportunities for regimen simplification, drug interactions or toxicity, and to encourage evidence-based practices.
An analysis of the workgroup suggests a peer-to-peer outreach program is associated with increased awareness and implementation of evidence based medicine in a pediatric population treated with behavioral health medications
Semi-parametric modeling of SARS-CoV-2 transmission in Orange County, California using tests, cases, deaths, and seroprevalence data
Mechanistic modeling of SARS-CoV-2 transmission dynamics and frequently
estimating model parameters using streaming surveillance data are important
components of the pandemic response toolbox. However, transmission model
parameter estimation can be imprecise, and sometimes even impossible, because
surveillance data are noisy and not informative about all aspects of the
mechanistic model. To partially overcome this obstacle, we propose a Bayesian
modeling framework that integrates multiple surveillance data streams. Our
model uses both SARS-CoV-2 diagnostics test and mortality time series to
estimate our model parameters, while also explicitly integrating seroprevalence
data from cross-sectional studies. Importantly, our data generating model for
incidence data takes into account changes in the total number of tests
performed. We model transmission rate, infection-to-fatality ratio, and a
parameter controlling a functional relationship between the true case incidence
and the fraction of positive tests as time-varying quantities and estimate
changes of these parameters nonparameterically. We apply our Bayesian data
integration method to COVID-19 surveillance data collected in Orange County,
California between March, 2020 and March, 2021 and find that 33-62% of the
Orange County residents experienced SARS-CoV-2 infection by the end of
February, 2021. Despite this high number of infections, our results show that
the abrupt end of the winter surge in January, 2021, was due to both behavioral
changes and a high level of accumulated natural immunity.Comment: 37 pages, 16 pages of main text, including 5 figures, 1 tabl
Pre-hospital management protocols and perceived difficulty in diagnosing acute heart failure
Aim To illustrate the pre-hospital management arsenals and protocols in different EMS units, and to estimate the perceived difficulty of diagnosing suspected acute heart failure (AHF) compared with other common pre-hospital conditions. Methods and results A multinational survey included 104 emergency medical service (EMS) regions from 18 countries. Diagnostic and therapeutic arsenals related to AHF management were reported for each type of EMS unit. The prevalence and contents of management protocols for common medical conditions treated pre-hospitally was collected. The perceived difficulty of diagnosing AHF and other medical conditions by emergency medical dispatchers and EMS personnel was interrogated. Ultrasound devices and point-of-care testing were available in advanced life support and helicopter EMS units in fewer than 25% of EMS regions. AHF protocols were present in 80.8% of regions. Protocols for ST-elevation myocardial infarction, chest pain, and dyspnoea were present in 95.2, 80.8, and 76.0% of EMS regions, respectively. Protocolized diagnostic actions for AHF management included 12-lead electrocardiogram (92.1% of regions), ultrasound examination (16.0%), and point-of-care testings for troponin and BNP (6.0 and 3.5%). Therapeutic actions included supplementary oxygen (93.2%), non-invasive ventilation (80.7%), intravenous furosemide, opiates, nitroglycerine (69.0, 68.6, and 57.0%), and intubation 71.5%. Diagnosing suspected AHF was considered easy to moderate by EMS personnel and moderate to difficult by emergency medical dispatchers (without significant differences between de novo and decompensated heart failure). In both settings, diagnosis of suspected AHF was considered easier than pulmonary embolism and more difficult than ST-elevation myocardial infarction, asthma, and stroke. Conclusions The prevalence of AHF protocols is rather high but the contents seem to vary. Difficulty of diagnosing suspected AHF seems to be moderate compared with other pre-hospital conditions
MRI-localized biopsies reveal subtype-specific differences in molecular and cellular composition at the margins of glioblastoma
Glioblastomas (GBMs) diffusely infiltrate the brain, making complete removal by surgical resection impossible. The mixture of neoplastic and nonneoplastic cells that remain after surgery form the biological context for adjuvant therapeutic intervention and recurrence. We performed RNA-sequencing (RNA-seq) and histological analysis on radiographically guided biopsies taken from different regions of GBM and showed that the tissue contained within the contrast-enhancing (CE) core of tumors have different cellular and molecular compositions compared with tissue from the nonenhancing (NE) margins of tumors. Comparisons with the The Cancer Genome Atlas dataset showed that the samples from CE regions resembled the proneural, classical, or mesenchymal subtypes of GBM, whereas the samples from the NE regions predominantly resembled the neural subtype. Computational deconvolution of the RNA-seq data revealed that contributions from nonneoplastic brain cells significantly influence the expression pattern in the NE samples. Gene ontology analysis showed that the cell type-specific expression patterns were functionally distinct and highly enriched in genes associated with the corresponding cell phenotypes. Comparing the RNA-seq data from the GBM samples to that of nonneoplastic brain revealed that the differentially expressed genes are distributed across multiple cell types. Notably, the patterns of cell type-specific alterations varied between the different GBM subtypes: the NE regions of proneural tumors were enriched in oligodendrocyte progenitor genes, whereas the NE regions of mesenchymal GBM were enriched in astrocytic and microglial genes. These subtypespecific patterns provide new insights into molecular and cellular composition of the infiltrative margins of GBM
Inhibition of StearoylCoA Desaturase Activity Blocks Cell Cycle Progression and Induces Programmed Cell Death in Lung Cancer Cells
Lung cancer is the most frequent form of cancer. The survival rate for patients with metastatic lung cancer is ∼5%, hence alternative therapeutic strategies to treat this disease are critically needed. Recent studies suggest that lipid biosynthetic pathways, particularly fatty acid synthesis and desaturation, are promising molecular targets for cancer therapy. We have previously reported that inhibition of stearoylCoA desaturase-1 (SCD1), the enzyme that produces monounsaturated fatty acids (MUFA), impairs lung cancer cell proliferation, survival and invasiveness, and dramatically reduces tumor formation in mice. In this report, we show that inhibition of SCD activity in human lung cancer cells with the small molecule SCD inhibitor CVT-11127 reduced lipid synthesis and impaired proliferation by blocking the progression of cell cycle through the G1/S boundary and by triggering programmed cell death. These alterations resulting from SCD blockade were fully reversed by either oleic (18:1n-9), palmitoleic acid (16:1n-7) or cis-vaccenic acid (18:1n-7) demonstrating that cis-MUFA are key molecules for cancer cell proliferation. Additionally, co-treatment of cells with CVT-11127 and CP-640186, a specific acetylCoA carboxylase (ACC) inhibitor, did not potentiate the growth inhibitory effect of these compounds, suggesting that inhibition of ACC or SCD1 affects a similar target critical for cell proliferation, likely MUFA, the common fatty acid product in the pathway. This hypothesis was further reinforced by the observation that exogenous oleic acid reverses the anti-growth effect of SCD and ACC inhibitors. Finally, exogenous oleic acid restored the globally decreased levels of cell lipids in cells undergoing a blockade of SCD activity, indicating that active lipid synthesis is required for the fatty acid-mediated restoration of proliferation in SCD1-inhibited cells. Altogether, these observations suggest that SCD1 controls cell cycle progression and apoptosis and, consequently, the overall rate of proliferation in cancer cells through MUFA-mediated activation of lipid synthesis
Recommended from our members
Behavioral interventions to reduce inappropriate antibiotic prescribing: a randomized pilot trial
Background: Clinicians frequently prescribe antibiotics inappropriately for acute respiratory infections (ARIs). Our objective was to test information technology-enabled behavioral interventions to reduce inappropriate antibiotic prescribing for ARIs in a randomized controlled pilot test trial. Methods: Primary care clinicians were randomized in a 2 × 2 × 2 factorial experiment with 3 interventions: 1) Accountable Justifications; 2) Suggested Alternatives; and 3) Peer Comparison. Beforehand, participants completed an educational module. Measures included: rates of antibiotic prescribing for: non-antibiotic-appropriate ARI diagnoses, acute sinusitis/pharyngitis, all other diagnoses/symptoms of respiratory infection, and all three ARI categories combined. Results: We examined 3,276 visits in the pre-intervention year and 3,099 in the intervention year. The antibiotic prescribing rate fell for non-antibiotic-appropriate ARIs (24.7 % in the pre-intervention year to 5.2 % in the intervention year); sinusitis/pharyngitis (50.3 to 44.7 %); all other diagnoses/symptoms of respiratory infection (40.2 to 25.3 %); and all categories combined (38.7 to 24.2 %; all p < 0.001). There were no significant relationships between any intervention and antibiotic prescribing for non-antibiotic-appropriate ARI diagnoses or sinusitis/pharyngitis. Suggested Alternatives was associated with reduced antibiotic prescribing for other diagnoses or symptoms of respiratory infection (odds ratio [OR], 0.62; 95 % confidence interval [CI], 0.44–0.89) and for all ARI categories combined (OR, 0.72; 95 % CI, 0.54–0.96). Peer Comparison was associated with reduced prescribing for all ARI categories combined (OR, 0.73; 95 % CI, 0.53–0.995). Conclusions: We observed large reductions in antibiotic prescribing regardless of whether or not study participants received an intervention, suggesting an overriding Hawthorne effect or possibly clinician-to-clinician contamination. Low baseline inappropriate prescribing may have led to floor effects. Trial Registration ClinicalTrials.gov: NCT01454960. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1715-8) contains supplementary material, which is available to authorized users
Hundreds of variants clustered in genomic loci and biological pathways affect human height
Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
- …