15 research outputs found

    Quantitative predictions on auxin-induced polar distribution of PIN proteins during vein formation in leaves

    Get PDF
    The dynamic patterning of the plant hormone auxin and its efflux facilitator the PIN protein are the key regulator for the spatial and temporal organization of plant development. In particular auxin induces the polar localization of its own efflux facilitator. Due to this positive feedback auxin flow is directed and patterns of auxin and PIN arise. During the earliest stage of vein initiation in leaves auxin accumulates in a single cell in a rim of epidermal cells from which it flows into the ground meristem tissue of the leaf blade. There the localized auxin supply yields the successive polarization of PIN distribution along a strand of cells. We model the auxin and PIN dynamics within cells with a minimal canalization model. Solving the model analytically we uncover an excitable polarization front that triggers a polar distribution of PIN proteins in cells. As polarization fronts may extend to opposing directions from their initiation site we suggest a possible resolution to the puzzling occurrence of bipolar cells, such we offer an explanation for the development of closed, looped veins. Employing non-linear analysis we identify the role of the contributing microscopic processes during polarization. Furthermore, we deduce quantitative predictions on polarization fronts establishing a route to determine the up to now largely unknown kinetic rates of auxin and PIN dynamics.Comment: 9 pages, 4 figures, supplemental information included, accepted for publication in Eur. Phys. J.

    Multiuser Cognitive Radio Networks: An Information Theoretic Perspective

    Full text link
    Achievable rate regions and outer bounds are derived for three-user interference channels where the transmitters cooperate in a unidirectional manner via a noncausal message-sharing mechanism. The three-user channel facilitates different ways of message-sharing between the primary and secondary (or cognitive) transmitters. Three natural extensions of unidirectional message-sharing from two users to three users are introduced: (i) Cumulative message sharing; (ii) primary-only message sharing; and (iii) cognitive-only message sharing. To emphasize the notion of interference management, channels are classified based on different rate-splitting strategies at the transmitters. Standard techniques, superposition coding and Gel'fand-Pinsker's binning principle, are employed to derive an achievable rate region for each of the cognitive interference channels. Simulation results for the Gaussian channel case are presented; they enable visual comparison of the achievable rate regions for different message-sharing schemes along with the outer bounds. These results also provide useful insights into the effect of rate-splitting at the transmitters, which aids in better interference management at the receivers.Comment: 50 pages, 15 figures, submitted to IEEE Transactions on Information Theor
    corecore