90 research outputs found

    Svestka's Research: Then and Now

    Full text link
    Zdenek Svestka's research work influenced many fields of solar physics, especially in the area of flare research. In this article I take five of the areas that particularly interested him and assess them in a "then and now" style. His insights in each case were quite sound, although of course in the modern era we have learned things that he could not readily have envisioned. His own views about his research life have been published recently in this journal, to which he contributed so much, and his memoir contains much additional scientific and personal information (Svestka, 2010).Comment: Invited review for "Solar and Stellar Flares," a conference in honour of Prof. Zden\v{e}k \v{S}vestka, Prague, June 23-27, 2014. This is a contribution to a Topical Issue in Solar Physics, based on the presentations at this meeting (Editors Lyndsay Fletcher and Petr Heinzel

    Acceptance and Use of E-Learning Based on Cloud Computing: The Role of Consumer Innovativeness

    Get PDF
    Cloud computing and E-learning are the inevitable trend of computational science in general, and information systems and technologies in specific.However, there are not many studies on the adoption of cloud-based E-learning systems. Moreover, while there are many papers on information system adoption as well as customer innovativeness, the innovativeness and adoption in the same model seems to be rare in the literature. The study combines the extended Unified Theory of Acceptance and Use of Technology (UTAUT2) and consumer innovativeness on the adoption of E-learning systems based on cloud computing. A survey was conducted among 282 cloud-based E-learning participants and analyzed by structural equation modeling (SEM). The findings indicate that the adoption of cloud-based E-learning is influenced by performance expectancy, social influence, hedonic motivation, and habit. Interestingly, although innovativeness is not significant to use intention, it has a positive effect on E-learning usage which is relatively new in Vietnam

    Gravitational Collapse and Disk Formation in Magnetized Cores

    Get PDF
    We discuss the effects of the magnetic field observed in molecular clouds on the process of star formation, concentrating on the phase of gravitational collapse of low-mass dense cores, cradles of sunlike stars. We summarize recent analytic work and numerical simulations showing that a substantial level of magnetic field diffusion at high densities has to occur in order to form rotationally supported disks. Furthermore, newly formed accretion disks are threaded by the magnetic field dragged from the parent core during the gravitational collapse. These disks are expected to rotate with a sub-Keplerian speed because they are partially supported by magnetic tension against the gravity of the central star. We discuss how sub-Keplerian rotation makes it difficult to eject disk winds and accelerates the process of planet migration. Moreover, magnetic fields modify the Toomre criterion for gravitational instability via two opposing effects: magnetic tension and pressure increase the disk local stability, but sub-Keplerian rotation makes the disk more unstable. In general, magnetized disks are more stable than their nonmagnetic counterparts; thus, they can be more massive and less prone to the formation of giant planets by gravitational instability.Comment: Chapter 16 in "Magnetic Fields in Diffuse Media", Springer-Verlag, eds. de Gouveia Dal Pino, E., Lazarian, A., Melioli,

    Dark networks and the problem of islamic Jihadist terrorism

    No full text
    corecore