694 research outputs found

    High precision Monte Carlo study of the 3D XY-universality class

    Full text link
    We present a Monte Carlo study of the two-component ϕ4\phi^4 model on the simple cubic lattice in three dimensions. By suitable tuning of the coupling constant λ\lambda we eliminate leading order corrections to scaling. High statistics simulations using finite size scaling techniques yield ν=0.6723(3)[8]\nu=0.6723(3)[8] and η=0.0381(2)[2]\eta=0.0381(2)[2], where the statistical and systematical errors are given in the first and second bracket, respectively. These results are more precise than any previous theoretical estimate of the critical exponents for the 3D XY universality class.Comment: 13 page

    Scaling of the superfluid density in superfluid films

    Full text link
    We study scaling of the superfluid density with respect to the film thickness by simulating the x−yx-y model on films of size L×L×HL \times L \times H (L>>HL >> H) using the cluster Monte Carlo. While periodic boundary conditions where used in the planar (LL) directions, Dirichlet boundary conditions where used along the film thickness. We find that our results can be scaled on a universal curve by introducing an effective thickness. In the limit of large HH our scaling relations reduce to the conventional scaling forms. Using the same idea we find scaling in the experimental results using the same value of ν=0.6705\nu = 0.6705.Comment: 4 pages, one postscript file replaced by one Latex file and 5 postscript figure

    Emission of photon echoes in a strongly scattering medium

    Full text link
    We observe the two- and three-pulse photon echo emission from a scattering powder, obtained by grinding a Pr3+^{3+}:Y2_2SiO5_5 rare earth doped single crystal. We show that the collective emission is coherently constructed over several grains. A well defined atomic coherence can therefore be created between randomly placed particles. Observation of photon echo on powders as opposed to bulk materials opens the way to faster material development. More generally, time-domain resonant four-wave mixing offers an attractive approach to investigate coherent propagation in scattering media

    Equation of State for Helium-4 from Microphysics

    Full text link
    We compute the free energy of helium-4 near the lambda transition based on an exact renormalization-group equation. An approximate solution permits the determination of universal and nonuniversal thermodynamic properties starting from the microphysics of the two-particle interactions. The method does not suffer from infrared divergences. The critical chemical potential agrees with experiment. This supports a specific formulation of the functional integral that we have proposed recently. Our results for the equation of state reproduce the observed qualitative behavior. Despite certain quantitative shortcomings of our approximation, this demonstrates that ab initio calculations for collective phenomena become possible by modern renormalization-group methods.Comment: 9 pages, 6 figures, revtex updated version, journal referenc

    Scaling of the specific heat in superfluid films

    Full text link
    We study the specific heat of the x−yx-y model on lattices L×L×HL \times L \times H with L≫HL \gg H (i.e. on lattices representing a film geometry) using the Cluster Monte--Carlo method. In the HH--direction we apply Dirichlet boundary conditions so that the order parameter in the top and bottom layers is zero. We find that our results for the specific heat of various thickness size HH collapse on the same universal scaling function. The extracted scaling function of the specific heat is in good agreement with the experimentally determined universal scaling function using no free parameters.Comment: 4 pages, uuencoded compressed PostScrip

    Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems

    Full text link
    Tungsten trioxide adopts a variety of structures which can be intercalated with charged species to alter the electronic properties, thus forming `tungsten bronzes'. Similar optical effects are observed upon removing oxygen from WO_3, although the electronic properties are slightly different. Here we present a computational study of cubic and hexagonal alkali bronzes and examine the effects on cell size and band structure as the size of the intercalated ion is increased. With the exception of hydrogen (which is predicted to be unstable as an intercalate), the behaviour of the bronzes are relatively consistent. NaWO_3 is the most stable of the cubic systems, although in the hexagonal system the larger ions are more stable. The band structures are identical, with the intercalated atom donating its single electron to the tungsten 5d valence band. Next, this was extended to a study of fractional doping in the Na_xWO_3 system (0 < x < 1). A linear variation in cell parameter, and a systematic change in the position of the Fermi level up into the valence band was observed with increasing x. In the underdoped WO_3-x system however, the Fermi level undergoes a sudden jump into the conduction band at around x = 0.2. Lastly, three compounds of a layered WO_4&#215;a,wdiaminoalkane hybrid series were studied and found to be insulating, with features in the band structure similar to those of the parent WO_3 compound which relate well to experimental UV-visible spectroscopy results.Comment: 12 pages, 16 figure

    Measuring the Quantum State of a Large Angular Momentum

    Get PDF
    We demonstrate a general method to measure the quantum state of an angular momentum of arbitrary magnitude. The (2F+1) x (2F+1) density matrix is completely determined from a set of Stern-Gerlach measurements with (4F+1) different orientations of the quantization axis. We implement the protocol for laser cooled Cesium atoms in the 6S_{1/2}(F=4) hyperfine ground state and apply it to a variety of test states prepared by optical pumping and Larmor precession. A comparison of input and measured states shows typical reconstruction fidelities of about 0.95.Comment: 4 pages, 6 figures, submitted to PR

    Coherent Control of Atomic Beam Diffraction by Standing Light

    Full text link
    Quantum interference is shown to deliver a means of regulating the diffraction pattern of a thermal atomic beam interacting with two standing wave electric fields. Parameters have been identified to enhance the diffraction probability of one momentum component over the others, with specific application to Rb atoms.Comment: 5 figure

    Quench Induced Vortices in the Symmetry Broken Phase of Liquid 4^4He

    Full text link
    Motivated by the study of cosmological phase transitions, our understanding of the formation of topological defects during spontaneous symmetry-breaking and the associated non-equilibrium field theory has recently changed. Experiments have been performed in superfluid 4^4He to test the new ideas involved. In particular, it has been observed that a vortex density is seen immediately after pressure quenches from just below the λ\lambda transition. We discuss possible interpretations of these vortices, conclude they are consistent with our ideas of vortex formation and propose a modification of the original experiments.Comment: 29 pages, RevTeX with one EPS figur
    • …
    corecore