4 research outputs found

    Automated volumetric modulated arc therapy planning for whole pelvic prostate radiotherapy Automatisierte volumenmodulierte Arc-Therapieplanung fĂĽr Ganzbecken-Prostatabestrahlung

    No full text
    markdownabstractBackground: For several tumor entities, automated treatment planning has improved plan quality and planning efficiency, and may enable adaptive treatment approaches. Whole-pelvic prostate radiotherapy (WPRT) involves large concave target volumes, which present a challenge for volumetric arc therapy (VMAT) optimization. This study evaluates automated VMAT planning for WPRT-VMAT and compares the results with manual expert planning. Methods: A system for fully automated multi-criterial plan generation was configured for each step of sequential-boost WPRT-VMAT, with final “autoVMAT” plans being automatically calculated by the Monaco treatment planning system (TPS; Elekta AB, Stockholm, Sweden). Configuration was based on manually generated VMAT plans (manualVMAT) of 5 test patients, the planning protocol, and discussions with the treating physician on wishes for plan improvements. AutoVMAT plans were then generated for another 30 evaluation patients and compared to manualVMAT plans. For all 35 patients, manualVMAT plans were optimized by expert planners using the Monaco TPS. Results: AutoVMAT plans exhibited strongly improved organ sparing and higher conformity compared to manualVMAT. On average, mean doses (Dmean) of bladder and rectum were reduced by 10.7 and 4.5 Gy, respectively, by autoVMAT. Prostate target coverage (V95%) was slightly higher (+0.6%) with manualVMAT. In a blinded scoring session, the radiation oncologist preferred autoVMAT plans to manualVMAT plans for 27/30 patients. All treatment plans were considered clinically acceptable. The workload per patient was reduced by > 70 min. Conclusion: Automated VMAT planning for complex WPRT dose distributions is feasible and creates treatment plans that are generally dosimetrically superior to manually optimized plans

    Climate warming during Antarctic ice sheet expansion at the Middle Miocene transition

    No full text
    During the Middle Miocene climate transition about 14 million years ago, the Antarctic ice sheet expanded to near-modern volume. Surprisingly, this ice sheet growth was accompanied by a warming in the surface waters of the Southern Ocean, whereas a slight deep-water temperature increase was delayed by more than 200 thousand years. Here we use a coupled atmosphere–ocean model to assess the relative effects of changes in atmospheric CO2 concentration and ice sheet growth on regional and global temperatures. In the simulations, changes in the wind field associated with the growth of the ice sheet induce changes in ocean circulation, deep-water formation and sea-ice cover that result in sea surface warming and deep-water cooling in large swaths of the Atlantic and Indian ocean sectors of the Southern Ocean. We interpret these changes as the dominant ocean surface response to a 100-thousand-year phase of massive ice growth in Antarctica. A rise in global annual mean temperatures is also seen in response to increased Antarctic ice surface elevation. In contrast, the longer-term surface and deep-water temperature trends are dominated by changes in atmospheric CO2 concentration. We therefore conclude that the climatic and oceanographic impacts of the Miocene expansion of the Antarctic ice sheet are governed by a complex interplay between wind field, ocean circulation and the sea-ice system
    corecore