1,219 research outputs found

    Epidemiology and prevention of pediatric viral respiratory infections in health-care institutions.

    Get PDF
    Nosocomial viral respiratory infections cause considerable illness and death on pediatric wards. Common causes of these infections include respiratory syncytial virus and influenza. Although primarily a community pathogen, rhinovirus also occasionally results in hospitalization and serious sequelae. This article reviews effective infection control interventions for these three pathogens, as well as ongoing controversies

    How to Avoid Common Pitfalls of Health IT Implementation

    Get PDF
    The stories in this guide were based on case studies about a specific intensive care IT system that integrates information from bedside monitors into a single intuitive display to provide better real-time information for clinicians

    Microscopic measurement of the linear compressibilities of two-dimensional fatty acid mesophases

    Full text link
    The linear compressibility of two-dimensional fatty acid mesophases has determined by grazing incidence x-ray diffraction. Surface pressure vs molecular area isotherms were reconstructed from these measurements, and the linear compressibility (relative distortion along a given direction for isotropic applied stress) was determined both in the sample plane and in a plane normal to the aliphatic chain director (transverse plane). The linear compressibilities range over two orders of magnitude from 0.1 to 10 m/N and are distributed depending on their magnitude in 4 different sets which we are able to associate with different molecular mechanisms. The largest compressibilities (10m/N) are observed in the tilted phases. They are apparently independent of the chain length and could be related to the reorganization of the headgroup hydrogen-bounded network, whose role should be revalued. Intermediate compressibilities are observed in phases with quasi long-range order (directions normal to the molecular tilt in L_2 or L_2' phases, S phase), and could be related to the ordering of these phases. The lowest compressibilities are observed in the solid untilted CS phase and for 1 direction of the S and L_2'' phases. They are similar to the compressibility of crystalline polymers and correspond to the interactions between methyl groups in the crystal. Finally, negative compressibilities are observed in the transverse plane for L_2' and L_2'' phases and can be traced to subtle reorganizations upon untilting.Comment: 24 pages, 17 figure

    Coarsening in surface growth models without slope selection

    Full text link
    We study conserved models of crystal growth in one dimension [∂tz(x,t)=−∂xj(x,t)\partial_t z(x,t) =-\partial_x j(x,t)] which are linearly unstable and develop a mound structure whose typical size L increases in time (L=tnL = t^n). If the local slope (m=∂xzm =\partial_x z) increases indefinitely, nn depends on the exponent γ\gamma characterizing the large mm behaviour of the surface current jj (j=1/∣m∣γj = 1/|m|^\gamma): n=1/4n=1/4 for 1<γ<31< \gamma <3 and n=(1+γ)/(1+5γ)n=(1+\gamma)/(1+5\gamma) for γ>3\gamma>3.Comment: 7 pages, 2 EPS figures. To be published in J. Phys. A (Letter to the Editor

    Atomic correlations in itinerant ferromagnets: quasi-particle bands of nickel

    Full text link
    We measure the band structure of nickel along various high-symmetry lines of the bulk Brillouin zone with angle-resolved photoelectron spectroscopy. The Gutzwiller theory for a nine-band Hubbard model whose tight-binding parameters are obtained from non-magnetic density-functional theory resolves most of the long-standing discrepancies between experiment and theory on nickel. Thereby we support the view of itinerant ferromagnetism as induced by atomic correlations.Comment: 4 page REVTeX 4.0, one figure, one tabl

    Hole dynamics in noble metals

    Full text link
    We present a detailed analysis of hole dynamics in noble metals (Cu and Au), by means of first-principles many-body calculations. While holes in a free-electron gas are known to live shorter than electrons with the same excitation energy, our results indicate that d-holes in noble metals exhibit longer inelastic lifetimes than excited sp-electrons, in agreement with experiment. The density of states available for d-hole decay is larger than that for the decay of excited electrons; however, the small overlap between d- and sp-states below the Fermi level increases the d-hole lifetime. The impact of d-hole dynamics on electron-hole correlation effects, which are of relevance in the analysis of time-resolved two-photon photoemission experiments, is also addressed.Comment: 4 pages, 2 figures, to appear in Phys. Rev. Let

    Electron-phonon renormalization of the absorption edge of the cuprous halides

    Full text link
    Compared to most tetrahedral semiconductors, the temperature dependence of the absorption edges of the cuprous halides (CuCl, CuBr, CuI) is very small. CuCl and CuBr show a small increase of the gap E0E_0 with increasing temperature, with a change in the slope of E0E_0 vs. TT at around 150 K: above this temperature, the variation of E0E_0 with TT becomes even smaller. This unusual behavior has been clarified for CuCl by measurements of the low temperature gap vs. the isotopic masses of both constituents, yielding an anomalous negative shift with increasing copper mass. Here we report the isotope effects of Cu and Br on the gap of CuBr, and that of Cu on the gap of CuI. The measured isotope effects allow us to understand the corresponding temperature dependences, which we also report, to our knowledge for the first time, in the case of CuI. These results enable us to develop a more quantitative understanding of the phenomena mentioned for the three halides, and to interpret other anomalies reported for the temperature dependence of the absorption gap in copper and silver chalcogenides; similarities to the behavior observed for the copper chalcopyrites are also pointed out.Comment: 14 pages, 5 figures, submitted to Phys. Rev.

    Fluctuations and differential contraction during regeneration of Hydra vulgaris tissue toroids

    Full text link
    We studied regenerating bilayered tissue toroids dissected from Hydra vulgaris polyps and relate our macroscopic observations to the dynamics of force-generating mesoscopic cytoskeletal structures. Tissue fragments undergo a specific toroid-spheroid folding process leading to complete regeneration towards a new organism. The time scale of folding is too fast for biochemical signalling or morphogenetic gradients which forced us to assume purely mechanical self-organization. The initial pattern selection dynamics was studied by embedding toroids into hydro-gels allowing us to observe the deformation modes over longer periods of time. We found increasing mechanical fluctuations which break the toroidal symmetry and discuss the evolution of their power spectra for various gel stiffnesses. Our observations are related to single cell studies which explain the mechanical feasibility of the folding process. In addition, we observed switching of cells from a tissue bound to a migrating state after folding failure as well as in tissue injury. We found a supra-cellular actin ring assembled along the toroid's inner edge. Its contraction can lead to the observed folding dynamics as we could confirm by finite element simulations. This actin ring in the inner cell layer is assembled by myosin- driven length fluctuations of supra-cellular {\alpha}-actin structures (myonemes) in the outer cell-layer.Comment: 19 pages and 8 figures, submitted to New Journal of Physic

    High Magnetic Field Microwave Conductivity of 2D Electrons in an Array of Antidots

    Full text link
    We measure the high magnetic field (BB) microwave conductivity, Reσxx\sigma_{xx}, of a high mobility 2D electron system containing an antidot array. Reσxx\sigma_{xx} vs frequency (ff) increases strongly in the regime of the fractional quantum Hall effect series, with Landau filling 1/3<ν<2/31/3<\nu<2/3. At microwave ff, Reσxx\sigma_{xx} vs BB exhibits a broad peak centered around ν=1/2\nu=1/2. On the peak, the 10 GHz Reσxx\sigma_{xx} can exceed its dc-limit value by a factor of 5. This enhanced microwave conductivity is unobservable for temperature T≳0.5T \gtrsim 0.5 K, and grows more pronounced as TT is decreased. The effect may be due to excitations supported by the antidot edges, but different from the well-known edge magnetoplasmons.Comment: 4 pages, 3 figures, revtex
    • …
    corecore