77 research outputs found
Resonant tunneling through ultrasmall quantum dots: zero-bias anomalies, magnetic field dependence, and boson-assisted transport
We study resonant tunneling through a single-level quantum dot in the
presence of strong Coulomb repulsion beyond the perturbative regime. The level
is either spin-degenerate or can be split by a magnetic field. We, furthermore,
discuss the influence of a bosonic environment. Using a real-time diagrammatic
formulation we calculate transition rates, the spectral density and the
nonlinear characteristic. The spectral density shows a multiplet of Kondo
peaks split by the transport voltage and the boson frequencies, and shifted by
the magnetic field. This leads to zero-bias anomalies in the differential
conductance, which agree well with recent experimental results for the electron
transport through single-charge traps. Furthermore, we predict that the sign of
the zero-bias anomaly depends on the level position relative to the Fermi level
of the leads.Comment: 27 pages, latex, 21 figures, submitted to Phys. Rev.
Non Linear Current Response of a Many-Level Tunneling System: Higher Harmonics Generation
The fully nonlinear response of a many-level tunneling system to a strong
alternating field of high frequency is studied in terms of the
Schwinger-Keldysh nonequilibrium Green functions. The nonlinear time dependent
tunneling current is calculated exactly and its resonance structure is
elucidated. In particular, it is shown that under certain reasonable conditions
on the physical parameters, the Fourier component is sharply peaked at
, where is the spacing between
two levels. This frequency multiplication results from the highly nonlinear
process of photon absorption (or emission) by the tunneling system. It is
also conjectured that this effect (which so far is studied mainly in the
context of nonlinear optics) might be experimentally feasible.Comment: 28 pages, LaTex, 7 figures are available upon request from
[email protected], submitted to Phys.Rev.
Effective Functional Form of Regge Trajectories
We present theoretical arguments and strong phenomenological evidence that
hadronic Regge trajectories are essentially nonlinear and can be well
approximated, for phenomenological purposes, by a specific square-root form.Comment: 29 pages, LaTeX. Published versio
Statistical Theory of Spin Relaxation and Diffusion in Solids
A comprehensive theoretical description is given for the spin relaxation and
diffusion in solids. The formulation is made in a general
statistical-mechanical way. The method of the nonequilibrium statistical
operator (NSO) developed by D. N. Zubarev is employed to analyze a relaxation
dynamics of a spin subsystem. Perturbation of this subsystem in solids may
produce a nonequilibrium state which is then relaxed to an equilibrium state
due to the interaction between the particles or with a thermal bath (lattice).
The generalized kinetic equations were derived previously for a system weakly
coupled to a thermal bath to elucidate the nature of transport and relaxation
processes. In this paper, these results are used to describe the relaxation and
diffusion of nuclear spins in solids. The aim is to formulate a successive and
coherent microscopic description of the nuclear magnetic relaxation and
diffusion in solids. The nuclear spin-lattice relaxation is considered and the
Gorter relation is derived. As an example, a theory of spin diffusion of the
nuclear magnetic moment in dilute alloys (like Cu-Mn) is developed. It is shown
that due to the dipolar interaction between host nuclear spins and impurity
spins, a nonuniform distribution in the host nuclear spin system will occur and
consequently the macroscopic relaxation time will be strongly determined by the
spin diffusion. The explicit expressions for the relaxation time in certain
physically relevant cases are given.Comment: 41 pages, 119 Refs. Corrected typos, added reference
Sirtuin E deacetylase is required for full virulence of Aspergillus fumigatus
Aspergillus fumigatus represents a public health problem due to the high mortality rate in immunosuppressed patients and the emergence of antifungal-resistant isolates. Protein acetylation is a crucial post-translational modification that controls gene expression and biological processes. The strategic manipulation of enzymes involved in protein acetylation has emerged as a promising therapeutic approach for addressing fungal infections. Sirtuins, NAD+-dependent lysine deacetylases, regulate protein acetylation and gene expression in eukaryotes. However, their role in the human pathogenic fungus A. fumigatus remains unclear. This study constructs six single knockout strains of A. fumigatus and a strain lacking all predicted sirtuins (SIRTKO). The mutant strains are viable under laboratory conditions, indicating that sirtuins are not essential genes. Phenotypic assays suggest sirtuins’ involvement in cell wall integrity, secondary metabolite production, thermotolerance, and virulence. Deletion of sirE attenuates virulence in murine and Galleria mellonella infection models. The absence of SirE alters the acetylation status of proteins, including histones and non-histones, and triggers significant changes in the expression of genes associated with secondary metabolism, cell wall biosynthesis, and virulence factors. These findings encourage testing sirtuin inhibitors as potential therapeutic strategies to combat A. fumigatus infections or in combination therapy with available antifungals
Toward a Multifaceted Heuristic of Digital Reading to Inform Assessment, Research, Practice, and Policy
In this commentary, the author explores the tension between almost 30 years of work that has embraced increasingly complex conceptions of digital reading and recent studies that risk oversimplifying digital reading as a singular entity analogous with reading text on a screen. The author begins by tracing a line of theoretical and empirical work that both informs and complicates our understanding of digital literacy and, more specifically, digital reading. Then, a heuristic is proposed to systematically organize, label, and define a multifaceted set of increasingly complex terms, concepts, and practices that characterize the spectrum of digital reading experiences. Research that informs this heuristic is used to illustrate how more precision in defining digital reading can promote greater clarity across research methods and advance a more systematic study of promising digital reading practices. Finally, the author discusses implications for assessment, research, practice, and policy
Amyloid and tau pathology associations with personality traits, neuropsychiatric symptoms, and cognitive lifestyle in the preclinical phases of sporadic and autosomal dominant Alzheimer’s disease
Background
Major prevention trials for Alzheimer’s disease (AD) are now focusing on multidomain lifestyle interventions. However, the exact combination of behavioral factors related to AD pathology remains unclear. In 2 cohorts of cognitively unimpaired individuals at risk of AD, we examined which combinations of personality traits, neuropsychiatric symptoms, and cognitive lifestyle (years of education or lifetime cognitive activity) related to the pathological hallmarks of AD, amyloid-β, and tau deposits.
Methods
A total of 115 older adults with a parental or multiple-sibling family history of sporadic AD (PREVENT-AD [PRe-symptomatic EValuation of Experimental or Novel Treatments for AD] cohort) underwent amyloid and tau positron emission tomography and answered several questionnaires related to behavioral attributes. Separately, we studied 117 mutation carriers from the DIAN (Dominant Inherited Alzheimer Network) study group cohort with amyloid positron emission tomography and behavioral data. Using partial least squares analysis, we identified latent variables relating amyloid or tau pathology with combinations of personality traits, neuropsychiatric symptoms, and cognitive lifestyle.
Results
In PREVENT-AD, lower neuroticism, neuropsychiatric burden, and higher education were associated with less amyloid deposition (p = .014). Lower neuroticism and neuropsychiatric features, along with higher measures of openness and extraversion, were related to less tau deposition (p = .006). In DIAN, lower neuropsychiatric burden and higher education were also associated with less amyloid (p = .005). The combination of these factors accounted for up to 14% of AD pathology.
Conclusions
In the preclinical phase of both sporadic and autosomal dominant AD, multiple behavioral features were associated with AD pathology. These results may suggest potential pathways by which multidomain interventions might help delay AD onset or progression
The influence of INK4 proteins on growth and self-renewal kinetics of hematopoietic progenitor cells
This study investigated the influence of expression of proteins of the INK4 family, particularly p16, on the growth and self-renewal kinetics of hematopoietic cells. First, retrovirus-mediated gene transfer (RMGT) was used to restore p16(INK4a) expression in the p16(INK4a)-deficient lymphoid and myeloid cell lines BV173 and K562, and it was confirmed that this inhibited their growth. Second, to sequester p16(INK4a) and related INK4 proteins, cyclin-dependent kinase 4 (CDK4) was retrovirally transduced into normal human CD34(+) bone marrow cells and then cultured in myeloid colony-forming cell (CFC) assays. The growth of CDK4-transduced colonies was more rapid; the cell-doubling time was reduced; and, upon replating, the colonies produced greater yields of secondary colonies than mock-untransduced controls. Third, colony formation was compared by marrow cells from p16(INK4a-/-) mice and wild-type mice. The results from p16(INK4a-/-) marrow were similar to those from CDK4-transduced human CFCs, in terms of growth rate and replating ability, and were partially reversed by RMGT of p16(INK4a). Lines of immature granulocytic cells were raised from 15 individual colonies grown from the marrow of p16(INK4a-/-) mice. These had a high colony-forming ability (15%) and replating efficiency (96.7%). The p16(INK4a-/-) cell lines readily became growth factor-independent upon cytokine deprivation. Taken together, these results demonstrate that loss of INK4 proteins, in particular p16(INK4a), increases the growth rate of myeloid colonies in vitro and, more importantly, confers an increased ability for clonal expansion on hematopoietic progenitor cells
- …