452 research outputs found
White matter connectomes at birth accurately predict cognitive abilities at age 2
Cognitive ability is an important predictor of mental health outcomes that is influenced by neurodevelopment. Evidence suggests that the foundational wiring of the human brain is in place by birth, and that the white matter (WM) connectome supports developing brain function. It is unknown, however, how the WM connectome at birth supports emergent cognition. In this study, a deep learning model was trained using cross-validation to classify full-term infants (n = 75) as scoring above or below the median at age 2 using WM connectomes generated from diffusion weighted magnetic resonance images at birth. Results from this model were used to predict individual cognitive scores. We additionally identified WM connections important for classification. The model was also evaluated in a separate set of preterm infants (n = 37) scanned at term-age equivalent. Findings revealed that WM connectomes at birth predicted 2-year cognitive score group with high accuracy in both full-term (89.5%) and preterm (83.8%) infants. Scores predicted by the model were strongly correlated with actual scores (r = 0.98 for full-term and r = 0.96 for preterm). Connections within the frontal lobe, and between the frontal lobe and other brain areas were found to be important for classification. This work suggests that WM connectomes at birth can accurately predict a child's 2-year cognitive group and individual score in full-term and preterm infants. The WM connectome at birth appears to be a useful neuroimaging biomarker of subsequent cognitive development that deserves further study
Bubble divergences from cellular cohomology
We consider a class of lattice topological field theories, among which are
the weak-coupling limit of 2d Yang-Mills theory, the Ponzano-Regge model of 3d
quantum gravity and discrete BF theory, whose dynamical variables are flat
discrete connections with compact structure group on a cell 2-complex. In these
models, it is known that the path integral measure is ill-defined in general,
because of a phenomenon called `bubble divergences'. A common expectation is
that the degree of these divergences is given by the number of `bubbles' of the
2-complex. In this note, we show that this expectation, although not realistic
in general, is met in some special cases: when the 2-complex is simply
connected, or when the structure group is Abelian -- in both cases, the
divergence degree is given by the second Betti number of the 2-complex.Comment: 5 page
Computing SL(2,C) Central Functions with Spin Networks
Let G=SL(2,C) and F_r be a rank r free group. Given an admissible weight in
N^{3r-3}, there exists a class function defined on Hom(F_r,G) called a central
function. We show that these functions admit a combinatorial description in
terms of graphs called trace diagrams. We then describe two algorithms
(implemented in Mathematica) to compute these functions.Comment: to appear in Geometriae Dedicat
Tritium Beta Decay, Neutrino Mass Matrices and Interactions Beyond the Standard Model
The interference of charge-changing interactions, weaker than the V-A
Standard Model (SM) interaction and having a different Lorentz structure, with
that SM interaction, can, in principle, produce effects near the end point of
the Tritium beta decay spectrum which are of a different character from those
produced by the purely kinematic effect of neutrino mass expected in the
simplest extension of the SM. We show that the existence of more than one mass
eigenstate can lead to interference effects at the end point that are stronger
than those occurring over the entire spectrum. We discuss these effects both
for the special case of Dirac neutrinos and the more general case of Majorana
neutrinos and show that, for the present precision of the experiments, one
formula should suffice to express the interference effects in all cases.
Implications for "sterile" neutrinos are noted.Comment: 32 pages, LaTeX, 6 figures, PostScript; full discussion and changes
in notation from Phys. Lett. B440 (1998) 89, nucl-th/9807057; submitted to
Phys. Rev.
Excluded Volume Effects in the Quark Meson Coupling Model
Excluded volume effects are incorporated in the quark meson coupling model to
take into account in a phenomenological way the hard core repulsion of the
nuclear force. The formalism employed is thermodynamically consistent and does
not violate causality. The effects of the excluded volume on in-medium nucleon
properties and the nuclear matter equation of state are investigated as a
function of the size of the hard core. It is found that in-medium nucleon
properties are not altered significantly by the excluded volume, even for large
hard core radii, and the equation of state becomes stiffer as the size of the
hard core increases.Comment: 14 pages, revtex, 6 figure
Cosmic coincidence problem and variable constants of physics
The standard model of cosmology is investigated using time dependent
cosmological constant and Newton's gravitational constant . The
total energy content is described by the modified Chaplygin gas equation of
state. It is found that the time dependent constants coupled with the modified
Chaplygin gas interpolate between the earlier matter to the later dark energy
dominated phase of the universe. We also achieve a convergence of parameter
, with minute fluctuations, showing an evolving . Thus our
model fairly alleviates the cosmic coincidence problem which demands
at present time.Comment: 27 pages, 15 figure
Bound on the neutrino magnetic moment from chirality flip in supernovae
For neutrinos with a magnetic moment, we show that the collisions in a hot
and dense plasma act as an efficient mechanism for the conversion of
into . The production rate for right-handed neutrinos is computed in
terms of a resummed photon propagator which consistently incorporates the
background effects. Assuming that the entire energy in a supernova collapse is
not carried away by the , our results can be used to place an upper
limit on the neutrino magnetic moment Comment: 11 pages, minor changes, new title. Final version to appear in Phys.
Rev. D (rapid communication
One loop renormalization of the four-dimensional theory for quantum dilaton gravity.
We study the one loop renormalization in the most general metric-dilaton
theory with the second derivative terms only. The general theory can be divided
into two classes, models of one are equivalent to conformally coupled with
gravity scalar field and also to general relativity with cosmological term. The
models of second class have one extra degree of freedom which corresponds to
dilaton. We calculate the one loop divergences for the models of second class
and find that the arbitrary functions of dilaton in the starting action can be
fine-tuned in such a manner that all the higher derivative counterterms
disappear on shell. The only structures in both classical action and
counterterms, which survive on shell, are the potential (cosmological) ones.
They can be removed by renormalization of the dilaton field which acquire the
nontrivial anomalous dimension, that leads to the effective running of the
cosmological constant. For some of the renormalizable solutions of the theory
the observable low energy value of the cosmological constant is small as
compared with the Newtonian constant. We also discuss another application of
our result.Comment: 21 pages, latex, no figures
A Phenomenological Analysis of Gluon Mass Effects in Inclusive Radiative Decays of the and $\Upsilon
The shapes of the inclusive photon spectra in the processes \Jp \to \gamma
X and \Up \to \gamma X have been analysed using all available experimental
data.
Relativistic, higher order QCD and gluon mass corrections were taken into
account in the fitted functions. Only on including the gluon mass corrections,
were consistent and acceptable fits obtained. Values of
GeV and GeV were found for the
effective gluon masses (corresponding to Born level diagrams) for the \Jp and
\Up respectively. The width ratios \Gamma(V \to {\rm hadrons})/\Gamma(V \to
\gamma+ {\rm hadrons}) V=\Jp, \Up were used to determine and . Values consistent with the current world
average were obtained only when gluon mass correction factors,
calculated using the fitted values of the effective gluon mass, were applied. A
gluon mass GeV, as suggested with these results, is consistent with
previous analytical theoretical calculations and independent phenomenological
estimates, as well as with a recent, more accurate, lattice calculation of the
gluon propagator in the infra-red region.Comment: 50 pages, 11 figures, 15 table
- âŠ