41 research outputs found
Parylene membrane slot filter for the capture, analysis and culture of viable circulating tumor cells
This paper presents a method of capturing viable
circulating tumor cells (CTC) from human whole
blood using constant-pressure-driven filtration through
a specially designed parylene-C membrane “slot” filter.
More than 90% viable cancer cells could be recovered
from whole blood using the slot filter, with minimal
non-cancer blood cells left on the filter. The feasibility
of the telomerase activity measurement of a single
cancer cell taken from the filter after capture was
proven. The on-filter and off-filter cultures of the
captured cancer cells were also demonstrated
Telomere and Telomerase Therapeutics in Cancer
Telomerase is a reverse transcriptase capable of utilizing an integrated RNA component as a template to add protective tandem telomeric single strand DNA repeats, TTAGGG, to the ends of chromosomes. Telomere dysfunction and telomerase reactivation are observed in approximately 90% of human cancers; hence, telomerase activation plays a unique role as a nearly universal step on the path to malignancy. In the past two decades, multiple telomerase targeting therapeutic strategies have been pursued, including direct telomerase inhibition, telomerase interference, hTERT or hTERC promoter driven therapy, telomere-based approaches, and telomerase vaccines. Many of these strategies have entered clinical development, and some have now advanced to phase III clinical trials. In the coming years, one or more of these new telomerase-targeting drugs may be expected to enter the pharmacopeia of standard care. Here, we briefly review the molecular functions of telomerase in cancer and provide an update about the preclinical and clinical development of telomerase targeting therapeutics
A Cancer Detection Platform Which Measures Telomerase Activity from Live Circulating Tumor Cells Captured on a Microfilter
Circulating tumor cells (CTC) quantified in cancer patients' blood can predict disease outcome and response to therapy. However, the CTC analysis platforms commonly used cannot capture live CTCs and only apply to tumors of epithelial origin. To address these limitations, we have developed a novel cancer detection platform which measures telomerase activity from live CTCs captured on a parylene-C slot microfilter. Using a constant low-pressure delivery system, the new microfilter platform was capable of cell capture from 1 mL of whole blood in less than 5 minutes, achieving 90% capture efficiency, 90% cell viability, and 200-fold sample enrichment. Importantly, the captured cells retained normal morphology by scanning electron microscopy and could be readily manipulated, further analyzed, or expanded on- or off-filter. Telomerase activity—a well-recognized universal cancer marker—was reliably detected by quantitative PCR from as few as 25 cancer cells added into 7.5 mL of whole blood and captured on the microfilter. Moreover, significant telomerase activity elevation was also measured from patients' blood samples and from single cancer cells lifted off of the microfilter. Live CTC capture and analysis is fast and simple yet highly quantitative, versatile, and applicable to nearly all solid tumor types, making this a highly promising new strategy for cancer detection and characterization
Magnesium-embedded live cell filter for CTC isolation
This paper reports a novel Magnesium-embedded cell filter for Circulating Tumor Cell (CTC) capture, release and isolation. The new and novel feature is the use of thin-film Mg to release the captured CTCs based on the fact that any Cl^- containing culture medium can readily etch Mg away [1]. The releasing and the isolation of each individual CTC are demonstrated here. After filtration process, the filter is submerged in PBS to facilitate Mg etching. The top PA-C filter pieces break apart from the bottom after Mg completely dissolves, enabling captured CTC cells to detach from the filter. The released CTC can then be easily aspirated into a micropipette, and then for further, such as, DNA mutation analysis
Isolation of circulating tumor cells by a magnesium-embedded filter
Circulating tumor cells (CTCs) are rare cancer cells that are shed by tumors into the bloodstream and that can be valuable biomarkers for various types of cancers. However, CTCs captured on the filter could not be released easily using the existing CTC analysis platforms based on size. To address this limitation, we have developed a novel magnesium (Mg)-embedded cell filter for capture, release and isolation of CTCs. The CTC-filter consists of a thin Ebeam-deposited Mg layer embedded between two parylene-C (PA-C) layers with designed slots for filtration and CTC capture. Thin Mg film has proved highly biocompatible and can be etched in saline, PBS and Dulbecco's modified eagle medium (DMEM) etc, properties that are of great benefit to help dissociate the filter and thus release the cells. The finite element method (FEM) analysis was performed on the Mg etching process in DMEM for the structure design. After the filtration process, the filter was submerged in DMEM to facilitate Mg etching. The top PA-C filter pieces break apart from the bottom after Mg completely dissolves, enabling captured CTCs to detach. The released CTC can be easily aspirated into a micropipette for further analysis. Thus, the Mg-embedded cell filter provides a new and effective approach for CTCs isolation from the filter, making this a promising new strategy for cancer detection