208 research outputs found
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
Early Steps of HIV-1 Fusion Define the Sensitivity to Inhibitory Peptides That Block 6-Helix Bundle Formation
The HIV envelope (Env) glycoprotein mediates membrane fusion through sequential interactions with CD4 and coreceptors, followed by the refolding of the transmembrane gp41 subunit into the stable 6-helix bundle (6HB) conformation. Synthetic peptides derived from the gp41 C-terminal heptad repeat domain (C-peptides) potently inhibit fusion by binding to the gp41 pre-bundle intermediates and blocking their conversion into the 6HB. Our recent work revealed that HIV-1 enters cells by fusing with endosomes, but not with the plasma membrane. These studies also showed that, for the large part, gp41 pre-bundles progress toward 6HBs in endosomal compartments and are thus protected from external fusion inhibitors. Here, we examined the consequences of endocytic entry on the gp41 pre-bundle exposure and on the virus' sensitivity to C-peptides. The rates of CD4 and coreceptor binding, as well as the rate of productive receptor-mediated endocytosis, were measured by adding specific inhibitors of these steps at varied times of virus-cell incubation. Following the CD4 binding, CCR5-tropic viruses recruited a requisite number of coreceptors much faster than CXCR4-tropic viruses. The rate of subsequent uptake of ternary Env-CD4-coreceptor complexes did not correlate with the kinetics of coreceptor engagement. These measurements combined with kinetic analyses enabled the determination of the lifetime of pre-bundle intermediates on the cell surface. Overall, these lifetimes correlated with the inhibitory potency of C-peptides. On the other hand, the basal sensitivity to peptides varied considerably among diverse HIV-1 isolates and ranked similarly with their susceptibility to inactivation by soluble CD4. We conclude that both the longevity of gp41 intermediates and the extent of irreversible conformational changes in Env upon CD4 binding determine the antiviral potency of C-peptides
The sensitivity and specificity of four questions (HARK) to identify intimate partner violence: a diagnostic accuracy study in general practice
<p>Abstract</p> <p>Background</p> <p>Intimate partner violence (IPV) including physical, sexual and emotional violence, causes short and long term ill-health. Brief questions that reliably identify women experiencing IPV who present in clinical settings are a pre-requisite for an appropriate response from health services to this substantial public health problem. We estimated the sensitivity and specificity of four questions (HARK) developed from the Abuse Assessment screen, compared to a 30-item abuse questionnaire, the Composite Abuse Scale (CAS).</p> <p>Methods</p> <p>We administered the four HARK questions and the CAS to women approached by two researchers in general practice waiting rooms in Newham, east London. Inclusions: women aged more than 17 years waiting to see a doctor or nurse, who had been in an intimate relationship in the last year. Exclusions: women who were accompanied by children over four years of age or another adult, too unwell to complete the questionnaires, unable to understand English or unable to give informed consent.</p> <p>Results</p> <p>Two hundred and thirty two women were recruited. The response rate was 54%. The prevalence of current intimate partner violence, within the last 12 months, using the CAS cut off score of ≥3, was 23% (95% C.I. 17% to 28%) with pre-test odds of 0.3 (95% C.I. 0.2 to 0.4). The receiver operator characteristic curve demonstrated that a HARK cut off score of ≥1 maximises the true positives whilst minimising the false positives. The sensitivity of the optimal HARK cut-off score of ≥1 was 81% (95% C.I. 69% to 90%), specificity 95% (95% C.I. 91% to 98%), positive predictive value 83% (95% C.I. 70% to 91%), negative predictive value 94% (95% C.I. 90% to 97%), likelihood ratio 16 (95% C.I. 8 to 31) and post-test odds 5.</p> <p>Conclusion</p> <p>The four HARK questions accurately identify women experiencing IPV in the past year and may help women disclose abuse in general practice. The HARK questions could be incorporated into the electronic medical record in primary care to prompt clinicians to ask about recent partner violence and to encourage disclosure by patients. Future research should test the effectiveness of HARK in clinical consultations.</p
The Generation of Promoter-Mediated Transcriptional Noise in Bacteria
Noise in the expression of a gene produces fluctuations in the concentration
of the gene product. These fluctuations can interfere with optimal function or
can be exploited to generate beneficial diversity between cells; gene
expression noise is therefore expected to be subject to evolutionary pressure.
Shifts between modes of high and low rates of transcription initiation at a
promoter appear to contribute to this noise both in eukaryotes and prokaryotes.
However, models invoked for eukaryotic promoter noise such as stable activation
scaffolds or persistent nucleosome alterations seem unlikely to apply to
prokaryotic promoters. We consider the relative importance of the steps
required for transcription initiation. The 3-step transcription initiation
model of McClure is extended into a mathematical model that can be used to
predict consequences of additional promoter properties. We show in principle
that the transcriptional bursting observed at an E. coli promoter by Golding et
al. (2005) can be explained by stimulation of initiation by the negative
supercoiling behind a transcribing RNA polymerase (RNAP) or by the formation of
moribund or dead-end RNAP-promoter complexes. Both mechanisms are tunable by
the alteration of promoter kinetics and therefore allow the optimization of
promoter mediated noise.Comment: 4 figures, 1 table. Supplemental materials are also include
Racial differences in the association between partner abuse and barriers to prenatal health care among asian and native Hawaiian/other Pacific Islander women
Objectives Prenatal health care (PNC) is associated with positive maternal and infant health outcomes. There is limited knowledge regarding Native Hawaiians/Other Pacific Islanders (NHOPI) and Asian women’s access to PNC especially among those with partner abuse (PA) experience. The objectives of this paper were to (1) describe and examine factors associated with PNC access barriers among mothers, by race; and, (2) determine the association between PA and PNC access, by race. Methods We analyzed 2004–2007 data from Hawai‘i’s Pregnancy Risk Assessment Monitoring System (n = 7,158). The outcome is ≥1 experience with a PNC access barrier. PA is experience with physical violence from a partner. Descriptive statistics, and bivariate and multivariate logistic regression analyses stratified by race were conducted. Results The respondents included 35.7% NHOPI, 37.4% Asian, 20.1% White and 6.6% Other. More than 6% experienced PA, and 25.9% reported ≥1 PNC access barrier. Experience with PA was significantly associated with NHOPI and Asians reporting ≥1 barrier to accessing PNC, but was non-significant with Whites. Conclusions Programs should address barriers to accessing PNC, and target NHOPI and Asian mothers with PA experience to reduce the healthcare disparity and improve quality of life
Variability in gene expression underlies incomplete penetrance
The phenotypic differences between individual organisms can often be ascribed to underlying genetic and environmental variation. However, even genetically identical organisms in homogeneous environments vary, indicating that randomness in developmental processes such as gene expression may also generate diversity. To examine the consequences of gene expression variability in multicellular organisms, we studied intestinal specification in the nematode Caenorhabditis elegans in which wild-type cell fate is invariant and controlled by a small transcriptional network. Mutations in elements of this network can have indeterminate effects: some mutant embryos fail to develop intestinal cells, whereas others produce intestinal precursors. By counting transcripts of the genes in this network in individual embryos, we show that the expression of an otherwise redundant gene becomes highly variable in the mutants and that this variation is subjected to a threshold, producing an ON/OFF expression pattern of the master regulatory gene of intestinal differentiation. Our results demonstrate that mutations in developmental networks can expose otherwise buffered stochastic variability in gene expression, leading to pronounced phenotypic variation.National Institutes of Health (U.S.). Pioneer AwardMathematical Sciences Postdoctoral Research Fellowships (DMS-0603392)National Institutes of Health (U.S.). Ruth L. Kirschstein National Research Service Award (5F32GM080966
Stochastic Analysis of the SOS Response in Escherichia coli
BACKGROUND: DNA damage in Escherichia coli evokes a response mechanism called the SOS response. The genetic circuit of this mechanism includes the genes recA and lexA, which regulate each other via a mixed feedback loop involving transcriptional regulation and protein-protein interaction. Under normal conditions, recA is transcriptionally repressed by LexA, which also functions as an auto-repressor. In presence of DNA damage, RecA proteins recognize stalled replication forks and participate in the DNA repair process. Under these conditions, RecA marks LexA for fast degradation. Generally, such mixed feedback loops are known to exhibit either bi-stability or a single steady state. However, when the dynamics of the SOS system following DNA damage was recently studied in single cells, ordered peaks were observed in the promoter activity of both genes (Friedman et al., 2005, PLoS Biol. 3(7):e238). This surprising phenomenon was masked in previous studies of cell populations. Previous attempts to explain these results harnessed additional genes to the system and deployed complex deterministic mathematical models that were only partially successful in explaining the results. METHODOLOGY/PRINCIPAL FINDINGS: Here we apply stochastic methods, which are better suited for dynamic simulations of single cells. We show that a simple model, involving only the basic components of the circuit, is sufficient to explain the peaks in the promoter activities of recA and lexA. Notably, deterministic simulations of the same model do not produce peaks in the promoter activities. CONCLUSION/SIGNIFICANCE: We conclude that the double negative mixed feedback loop with auto-repression accounts for the experimentally observed peaks in the promoter activities. In addition to explaining the experimental results, this result shows that including additional regulations in a mixed feedback loop may dramatically change the dynamic functionality of this regulatory module. Furthermore, our results suggests that stochastic fluctuations strongly affect the qualitative behavior of important regulatory modules even under biologically relevant conditions, thus emphasizing the importance of stochastic analysis of regulatory circuits
Exploring the Contextual Sensitivity of Factors that Determine Cell-to-Cell Variability in Receptor-Mediated Apoptosis
Stochastic fluctuations in gene expression give rise to cell-to-cell variability in protein levels which can potentially cause variability in cellular phenotype. For TRAIL (TNF-related apoptosis-inducing ligand) variability manifests itself as dramatic differences in the time between ligand exposure and the sudden activation of the effector caspases that kill cells. However, the contribution of individual proteins to phenotypic variability has not been explored in detail. In this paper we use feature-based sensitivity analysis as a means to estimate the impact of variation in key apoptosis regulators on variability in the dynamics of cell death. We use Monte Carlo sampling from measured protein concentration distributions in combination with a previously validated ordinary differential equation model of apoptosis to simulate the dynamics of receptor-mediated apoptosis. We find that variation in the concentrations of some proteins matters much more than variation in others and that precisely which proteins matter depends both on the concentrations of other proteins and on whether correlations in protein levels are taken into account. A prediction from simulation that we confirm experimentally is that variability in fate is sensitive to even small increases in the levels of Bcl-2. We also show that sensitivity to Bcl-2 levels is itself sensitive to the levels of interacting proteins. The contextual dependency is implicit in the mathematical formulation of sensitivity, but our data show that it is also important for biologically relevant parameter values. Our work provides a conceptual and practical means to study and understand the impact of cell-to-cell variability in protein expression levels on cell fate using deterministic models and sampling from parameter distributions
Cognitive ability, parental socioeconomic position and internalising and externalising problems in adolescence: Findings from two European cohort studies
We investigated whether cognitive ability (CA) may be a moderator of the relationship of parental socioeconomic position (SEP) with internalising and externalising problems in adolescents. We used data from two longitudinal cohort studies; the Avon Longitudinal Study of Parents and Children (ALSPAC) and the Tracking Adolescents’ Individual Lives Survey (TRAILS). Indicators of SEP were mother’s education and household income. CA was estimated with IQ scores, derived from the Wechsler Intelligence Scale for Children. Internalising and externalising problems were measured with the Strengths and Difficulties Questionnaire in ALSPAC and with the Child Behavior Checklist in TRAILS. Logistic regression analyses were used to estimate the relative index of inequality (RII) for each outcome; the RII provides the odds ratio comparing the most to least deprived for each measure of SEP. In fully adjusted models an association of mother’s education with externalising problems was observed [ALSPAC RII 1.42 (95%CI: 1.01–1.99); TRAILS RII 2.21 (95%CI: 1.37–3.54)], and of household income with internalising and externalising problems [pooled ALSPAC & TRAILS internalising RII 1.30 (95%CI: 0.99–1.71); pooled ALSPAC & TRAILS externalising RII 1.38 (95%CI: 1.03–1.84)]. No consistent associations were observed between mother’s education and internalising problems. Results of stratified analyses and interaction-terms showed no evidence that CA moderated the association of SEP with internalising or externalising problems
- …