405 research outputs found
Hierarchy of stratigraphic forcing: Example from Middle Pennsylvanian shelf carbonates of the Paradox basin
Middle Pennsylvanian (Desmoinesian) shelf carbonates in the southwestern Paradox basin display three superimposed orders of stratigraphic cyclicity with a systematic vertical succession of facies, cycle, and sequence stacking patterns. Fifth-order cycles [34 cycles in a 645-ft (197-m) section; average 20 ft (6.1 m) thick; mean period 29,000 years] are grouped into fourth-order sequences [average 100 ft (30 m) thick; mean period 257,000 years], which in turn stack vertically to define a third-order sequence [650+ ft (200+ m) thick; 2-3 m.y. duration]. Fifth-order cycles are composed of shallow ing-upward packages of predominantly subtidal shelf carbonates with sharp cycle boundaries (either exposure or flooding surfaces). Fifth-order cycles are packaged into fourth-order sequences bounded by regionally correlative subaerial exposure surfaces. These type 1 sequences contain a downdip, restricted lowstand wedge of evaporites and quartz clastics in topographic lows on the Paradox shelf (intrashelf depressions). The lowstand systems tract is overlain by a regionally correlative transgressive shaly mudstone (condensed section) and a highstand systems tract composed of thinning-upward, aggradational fifth-order cycles. Systematic variation in the thickness of fourth-order sequences (thinning upward followed by thickening upward) and systematic variations in the number of fifth-order cycles and fourth-order sequences (decreasing followed by increasing number) defines a third-order accommodation trend that is also regionally correlative. High-frequency cycles and sequences are interpreted as predominantly aggradational allocycles generated in response to composite fourth- and fifth-order glacio-eustatic sea-level fluctuations. Two different orbital forcing (Milankovitch) scenarios are evaluated to explain the composite stratigraphic cyclicity of the Paradox sequences, each of which is plausible given Desmoinesian age estimates. The cycle, sequence, and facies stacking patterns have been replicated by means of computer modeling by superimposing composite high-frequency glacio-eustasy atop regional subsidence using depth-dependent, sedimentation
Hierarchy of stratigraphic forcing: Example from Middle Pennsylvanian shelf carbonates of the Paradox basin
Middle Pennsylvanian (Desmoinesian) shelf carbonates in the southwestern Paradox basin display three superimposed orders of stratigraphic cyclicity with a systematic vertical succession of facies, cycle, and sequence stacking patterns. Fifth-order cycles [34 cycles in a 645-ft (197-m) section; average 20 ft (6.1 m) thick; mean period 29,000 years] are grouped into fourth-order sequences [average 100 ft (30 m) thick; mean period 257,000 years], which in turn stack vertically to define a third-order sequence [650+ ft (200+ m) thick; 2-3 m.y. duration]. Fifth-order cycles are composed of shallow ing-upward packages of predominantly subtidal shelf carbonates with sharp cycle boundaries (either exposure or flooding surfaces). Fifth-order cycles are packaged into fourth-order sequences bounded by regionally correlative subaerial exposure surfaces. These type 1 sequences contain a downdip, restricted lowstand wedge of evaporites and quartz clastics in topographic lows on the Paradox shelf (intrashelf depressions). The lowstand systems tract is overlain by a regionally correlative transgressive shaly mudstone (condensed section) and a highstand systems tract composed of thinning-upward, aggradational fifth-order cycles. Systematic variation in the thickness of fourth-order sequences (thinning upward followed by thickening upward) and systematic variations in the number of fifth-order cycles and fourth-order sequences (decreasing followed by increasing number) defines a third-order accommodation trend that is also regionally correlative. High-frequency cycles and sequences are interpreted as predominantly aggradational allocycles generated in response to composite fourth- and fifth-order glacio-eustatic sea-level fluctuations. Two different orbital forcing (Milankovitch) scenarios are evaluated to explain the composite stratigraphic cyclicity of the Paradox sequences, each of which is plausible given Desmoinesian age estimates. The cycle, sequence, and facies stacking patterns have been replicated by means of computer modeling by superimposing composite high-frequency glacio-eustasy atop regional subsidence using depth-dependent, sedimentation
High energy proton radiation damage to (AlGa)As-G aAs solar cells
Twelve 2 + 2 sq cm (AlGa)As-GaAs solar cells were fabricated and were subjected to 15.4 and 40 MeV of proton irradiation. The results showed that the GaAs cells degrade considerably less than do conventional and developmental K7 silicon cells. The detailed characteristics of the GaAs and silicon cells, both before and after irradiation, are described. Further optimization of the GaAs cells seems feasible, and areas for future work are suggested
Preventing Isolated Perioperative Reintubation: Who is at highest risk?
Objectives:
1. We aim to characterize IPR nationally through a retrospective review of the National Surgical Quality Improvement Program participant user file (NSQIP PUF).
2.Identify risk factors for IPR including analysis of procedure type and preoperative characteristics.https://jdc.jefferson.edu/patientsafetyposters/1041/thumbnail.jp
Evaluating the Robustness of Learning Analytics Results Against Fake Learners
Massive Open Online Courses (MOOCs) collect large amounts of rich data. A primary objective of Learning Analytics (LA) research is studying these data in order to improve the pedagogy of interactive
learning environments. Most studies make the underlying assumption that the data represent truthful and honest learning activity. However, previous studies showed that MOOCs can have large cohorts of users that
break this assumption and achieve high performance through behaviors such as Cheating Using Multiple Accounts or unauthorized collaboration, and we therefore denote them fake learners. Because of their aberrant
behavior, fake learners can bias the results of Learning Analytics (LA) models. The goal of this study is to evaluate the robustness of LA results when the data contain a considerable number of fake learners. Our
methodology follows the rationale of âreplication researchâ. We challenge the results reported in a well-known, and one of the first LA/PedagogicEfficacy MOOC papers, by replicating its results with and without the fake learners (identified using machine learning algorithms). The results show that fake learners exhibit very different behavior compared to true learners. However, even though they are a significant portion of the student
population (âŒ15%), their effect on the results is not dramatic (does not change trends). We conclude that the LA study that we challenged was robust against fake learners. While these results carry an optimistic
message on the trustworthiness of LA research, they rely on data from one MOOC. We believe that this issue should receive more attention within the LA research community, and can explain some âsurprisingâ research results in MOOCs. Keywords: Learning Analytics, Educational Data Mining, MOOCs, Fake Learners, Reliability, IR
Universal description of S-wave meson spectra in a renormalized light-cone QCD-inspired model
A light-cone QCD-inspired model, with the mass squared operator consisting of
a harmonic oscillator potential as confinement and a Dirac-delta interaction,
is used to study the S-wave meson spectra. The two parameters of the harmonic
potential and quark masses are fixed by masses of rho(770), rho(1450), J/psi,
psi(2S), K*(892) and B*. We apply a renormalization method to define the model,
in which the pseudo-scalar ground state mass fixes the renormalized strength of
the Dirac-delta interaction. The model presents an universal and satisfactory
description of both singlet and triplet states of S-wave mesons and the
corresponding radial excitations.Comment: RevTeX, 17 pages, 7 eps figures, to be published in Phys. Rev.
Splitting of the pi - rho spectrum in a renormalized light-cone QCD-inspired model
We show that the splitting between the light pseudo-scalar and vector meson
states is due to the strong short-range attraction in the ^1S_0 sector which
makes the pion and the kaon light particles. We use a light-cone QCD-inspired
model of the mass squared operator with harmonic confinement and a Dirac-delta
interaction. We apply a renormalization method to define the model, in which
the pseudo-scalar ground state mass fixes the renormalized strength of the
Dirac-delta interaction.Comment: 9 pages, 2 figures, revtex, accepted by Phys. Rev. D; Corrected typo
Nature of the metal-nonmetal transition in metal-ammonia solutions. I. Solvated electrons at low metal concentrations
Using a theory of polarizable fluids, we extend a variational treatment of an
excess electron to the many-electron case corresponding to finite metal
concentrations in metal-ammonia solutions (MAS). We evaluate dielectric,
optical, and thermodynamical properties of MAS at low metal concentrations. Our
semi-analytical calculations based on a mean-spherical approximation correlate
well with the experimental data on the concentration and the temperature
dependencies of the dielectric constant and the optical absorption spectrum.
The properties are found to be mainly determined by the induced dipolar
interactions between localized solvated electrons, which result in the two main
effects: the dispersion attractions between the electrons and a sharp increase
in the static dielectric constant of the solution. The first effect provides a
classical phase separation for the light alkali metal solutes (Li, Na, K) below
a critical temperature. The second effect leads to a dielectric instability,
i.e., polarization catastrophe, which is the onset of metallization. The locus
of the calculated critical concentrations is in a good agreement with the
experimental phase diagram of Na-NH3 solutions. The proposed mechanism of the
metal-nonmetal transition is quite general and may occur in systems involving
self-trapped quantum quasiparticles.Comment: 13 figures, 42 page
High Pressure Insulator-Metal Transition in Molecular Fluid Oxygen
We report the first experimental evidence for a metallic phase in fluid
molecular oxygen. Our electrical conductivity measurements of fluid oxygen
under dynamic quasi-isentropic compression show that a non-metal/metal
transition occurs at 3.4 fold compression, 4500 K and 1.2 Mbar. We discuss the
main features of the electrical conductivity dependence on density and
temperature and give an interpretation of the nature of the electrical
transport mechanisms in fluid oxygen at these extreme conditions.Comment: RevTeX, 4 figure
Earliest Triassic microbialites in the South China Block and other areas; controls on their growth and distribution
Earliest Triassic microbialites (ETMs) and inorganic carbonate crystal fans formed after the end-Permian mass extinction (ca. 251.4 Ma) within the basal Triassic Hindeodus parvus conodont zone. ETMs are distinguished from rarer, and more regional, subsequent Triassic microbialites. Large differences in ETMs between northern and southern areas of the South China block suggest geographic provinces, and ETMs are most abundant throughout the equatorial Tethys Ocean with further geographic variation. ETMs occur in shallow-marine shelves in a superanoxic stratified ocean and form the only widespread Phanerozoic microbialites with structures similar to those of the Cambro-Ordovician, and briefly after the latest Ordovician, Late Silurian and Late Devonian extinctions. ETMs disappeared long before the mid-Triassic biotic recovery, but it is not clear why, if they are interpreted as disaster taxa. In general, ETM occurrence suggests that microbially mediated calcification occurred where upwelled carbonate-rich anoxic waters mixed with warm aerated surface waters, forming regional dysoxia, so that extreme carbonate supersaturation and dysoxic conditions were both required for their growth. Long-term oceanic and atmospheric changes may have contributed to a trigger for ETM formation. In equatorial western Pangea, the earliest microbialites are late Early Triassic, but it is possible that ETMs could exist in western Pangea, if well-preserved earliest Triassic facies are discovered in future work
- âŠ