1,449 research outputs found

    Independent electrons model for open quantum systems: Landauer-Buettiker formula and strict positivity of the entropy production

    Full text link
    A general argument leading from the formula for currents through an open noninteracting mesoscopic system given by the theory of non-equilibrium steady states (NESS) to the Landauer-Buettiker formula is pointed out. Time reversal symmetry is not assumed. As a consequence it follows that, as far as the system has a nontrivial scattering theory and the reservoirs have different temperatures and/or chemical potentials, the entropy production is strictly positive.Comment: 12 pages. Submitted for publication in J. Math. Phys. on 2006-06-05. Revision and extension of: G. Nenciu, A general proof of Landauer-Buettiker formula, [math-ph/0603030

    Phenomenology of a Stabilized Modulus

    Get PDF
    We explore the phenomenology of a stabilized modulus field in the Randall-Sundrum scenario. It is found that if the large separation between branes arises from a small bulk scalar mass then the modulus is likely to be lighter than the lowest Kaluza-Klein excitations of bulk fields, and consequently may be the first direct signature of the model. Four-dimensional general covariance completely determines the couplings of the modulus to Standard Model fields. The strength of these couplings is determined by a single parameter which is set by the TeV rather than the Planck scale

    The Lorentz integral transform (LIT) method

    Full text link
    The LIT approach is reviewed both for inclusive and exclusive reactions. It is shown that the method reduces a continuum state problem to a bound-state-like problem, which then can be solved with typical bound-state techniques. The LIT approach opens up the possibility to perform ab initio calculations of reactions also for those particle systems which presently are out of reach in conventional approaches with explicit calculations of many-body continuum wave functions. Various LIT applications are discussed ranging from particle systems with two nucleons up to particle systems with seven nucleons.Comment: Lectures delivered at the 4th DAE-BRNS Workshop on Hadron Physics, AMU, Aligarh, India, Feb. 18-23, 2008; 23 pages, 16 figure

    Radion effects on unitarity in gauge-boson scattering

    Get PDF
    The scalar field associated with fluctuations in the positions of the two branes, the ``radion'', plays an important role determining the cosmology and collider phenomenology of the Randall-Sundrum solution to the hierarchy problem. It is now well known that the radion mass is of order the weak scale, and that its couplings to standard model fields are order 1/TeV to the trace of the energy momentum tensor. We calculate longitudinal vector boson scattering amplitudes to explore the constraints on the radion mass and its coupling from perturbative unitarity. The scattering cross section can indeed become non-perturbative at energies prior to reaching the TeV brane cutoff scale, but only when some curvature-Higgs mixing on the TeV brane is present. We show that the coefficient of the curvature-Higgs mixing operator must be less than about 3 for the 4-d effective theory to respect perturbative unitarity up to the TeV brane cutoff scale. Mass bounds on the Higgs boson and the radion are also discussed.Comment: 17 pages, LaTeX, 5 eps figures, uses epsf.sty and axodraw.st

    Bulk Fields in Delocalized Dilatonic p-Branes

    Get PDF
    We study localization properties of various bulk fields on a dilatonic p-brane which is delocalized along its transverse directions except one. We find that all the bosonic and fermionic bulk fields can be localized on the delocalized dilatonic p-brane in a strict sense, namely the Kaluza-Klein zero modes of the bulk fields are normalizable and are localized around the brane, for any values of the dilaton coupling parameter.Comment: 9 pages, LaTe

    The dynamics of the gravitational two-body problem at fourth post-Newtonian order and at quadratic order in the Newton constant

    Full text link
    We derive the conservative part of the Lagrangian and the energy of a gravitationally bound two-body system at fourth post-Newtonian order, up to terms quadratic in the Newton constant. We also show that such terms are compatible with Lorentz invariance and we write an ansatz for the center-of-mass position. The remaining terms carrying higher powers of the Newton constant are currently under investigation.Comment: 24 pages, 2 figures. Typos in formulae corrected, references added, more comments in the conclusion in v

    Some Properties of Domain Wall Solution in the Randall-Sundrum Model

    Get PDF
    Properties of the domain wall (kink) solution in the 5 dimensional Randall-Sundrum model are examined both {\it analytically} and {\it numerically}. The configuration is derived by the bulk Higgs mechanism. We focus on 1) the convergence property of the solution, 2) the stableness of the solution, 3) the non-singular property of the Riemann curvature, 4) the behaviours of the warp factor and the Higgs field. It is found that the bulk curvature changes the sign around the surface of the wall. We also present some {\it exact} solutions for two simple cases: a) the no potential case, b) the cosmological term dominated case. Both solutions have the (naked) curvature singularity. We can regard the domain wall solution as a singularity resolution of the exact solutions.Comment: Typographical error correction for publication. 16 pages, 4 figure

    Scalar-Tensor Gravity in Two 3-brane System

    Get PDF
    We derive the low-energy effective action of four-dimensional gravity in the Randall-Sundrum scenario in which two 3-branes of opposite tension reside in a five-dimensional spacetime. The dimensional reduction with the Ansatz for the radion field by Charmousis et al., which solves five-dimensional linearized field equations, results in a class of scalar-tensor gravity theories. In the limit of vanishing radion fluctuations, the effective action reduces to the Brans-Dicke gravity in accord with the results of Garriga and Tanaka: Brans-Dicke gravity with the corresponding Brans-Dicke parameter 0<ω<∞0< \omega < \infty (for positive tension brane) and −3/2<ω<0-3/2< \omega <0 (for negative tension brane). In general the gravity induced a brane belongs to a class of scalar-tensor gravity with the Brans-Dicke parameter which is a function of the interval and the radion. In particular, gravity on a positive tension brane contains an attractor mechanism toward the Einstein gravity.Comment: 8 pages, discussion expanded, references adde

    Higgs Mechanism and Bulk Gauge Boson Masses in the Randall-Sundrum Model

    Get PDF
    Assuming the breaking of gauge symmetries by the Higgs mechanism, we consider the associated bulk gauge boson masses in the Randall-Sundrum background. With the Higgs field confined on the TeV-brane, the W and Z boson masses can naturally be an order of magnitude smaller than their Kaluza-Klein excitation masses. Current electroweak precision data requires the lowest excited state to lie above about 30 TeV, with fermions on the TeV-brane. This bound is reduced to about 10 TeV if the fermions reside sufficiently close to the Planck-brane. Thus, some tuning of parameters is needed. We also discuss the bulk Higgs case, where the bounds are an order of magnitude smaller.Comment: 5 pages, 5 figures, using REVTeX, slightly expanded version to appear in Phys. Rev.

    Supersymmetric Randall-Sundrum Scenario

    Get PDF
    We present the supersymmetric version of the minimal Randall-Sundrum model with two opposite tension branes.Comment: Latex, 9 pages. Published versio
    • 

    corecore