15,926 research outputs found

    Stationary generalized Kerr-Schild spacetimes

    Get PDF
    In this paper we have applied the generalized Kerr-Schild transformation finding a new family of stationary perfect-fluid solutions of the Einstein field equations. The procedure used combines some well-known techniques of null and timelike vector fields, from which some properties of the solutions are studied in a coordinate-free way. These spacetimes are algebraically special being their Petrov types II and D. This family includes all the classical vacuum Kerr-Schild spacetimes, excepting the plane-fronted gravitational waves, and some other interesting solutions as, for instance, the Kerr metric in the background of the Einstein Universe. However, the family is much more general and depends on an arbitrary function of one variable.Comment: 21 pages, LaTeX 2.09. To be published in Journal of Mathematical Physic

    Nonlinear feedback oscillations in resonant tunneling through double barriers

    Full text link
    We analyze the dynamical evolution of the resonant tunneling of an ensemble of electrons through a double barrier in the presence of the self-consistent potential created by the charge accumulation in the well. The intrinsic nonlinearity of the transmission process is shown to lead to oscillations of the stored charge and of the transmitted and reflected fluxes. The dependence on the electrostatic feedback induced by the self-consistent potential and on the energy width of the incident distribution is discussed.Comment: 10 pages, TeX, 5 Postscript figure

    QCD and the Chiral Critical Point

    Full text link
    As an extension of QCDQCD, consider a theory with ``2+12+1'' flavors, where the current quark masses are held in a fixed ratio as the overall scale of the quark masses is varied. At nonzero temperature and baryon density it is expected that in the chiral limit the chiral phase transition is of first order. Increasing the quark mass from zero, the chiral transition becomes more weakly first order, and can end in a chiral critical point. We show that the only massless field at the chiral critical point is a sigma meson, with the universality class that of the Ising model. Present day lattice simulations indicate that QCDQCD is (relatively) near to the chiral critical point.Comment: 7 pages + 2 figures, BNL-GGP-

    Interaction Energy of `t Hooft-Polyakov Monopoles

    Get PDF
    The dependence of the energies of axially symmetric monopoles of magnetic charges 2 and 3, on the Higgs self-interaction coupling constant, is studied numerically. Comparing the energy per unit topological charge of the charge-2 monopole with the energy of the spherically symmetric charge-1 monopole, we confirm that there is only a repulsive phase in the interaction energy between like monopolesComment: 6 pages, including 1 postscript figure, LaTex2e forma

    A model checking approach to the parameter estimation of biochemical pathways

    Get PDF
    Model checking has historically been an important tool to verify models of a wide variety of systems. Typically a model has to exhibit certain properties to be classed ‘acceptable’. In this work we use model checking in a new setting; parameter estimation. We characterise the desired behaviour of a model in a temporal logic property and alter the model to make it conform to the property (determined through model checking). We have implemented a computational system called MC2(GA) which pairs a model checker with a genetic algorithm. To drive parameter estimation, the fitness of set of parameters in a model is the inverse of the distance between its actual behaviour and the desired behaviour. The model checker used is the simulation-based Monte Carlo Model Checker for Probabilistic Linear-time Temporal Logic with numerical constraints, MC2(PLTLc). Numerical constraints as well as the overall probability of the behaviour expressed in temporal logic are used to minimise the behavioural distance. We define the theory underlying our parameter estimation approach in both the stochastic and continuous worlds. We apply our approach to biochemical systems and present an illustrative example where we estimate the kinetic rate constants in a continuous model of a signalling pathway

    Hysteretic Optimization

    Full text link
    We propose a new optimization method based on a demagnetization procedure well known in magnetism. We show how this procedure can be applied as a general tool to search for optimal solutions in any system where the configuration space is endowed with a suitable `distance'. We test the new algorithm on frustrated magnetic models and the traveling salesman problem. We find that the new method successfully competes with similar basic algorithms such as simulated annealing.Comment: 5 pages, 5 figure

    Synthesis of coumarins by ring-closing metathesis

    Get PDF
    Investigations into olefin ring-closing metathesis (RCM) have led to a general method for the synthesis of coumarins. Catalysts with higher activity, such as the second-generation ruthenium catalyst, promote the intramolecular reaction between two-electron deficient olefins. This method allows for convenient access to a variety of coumarins substituted at both the 3- and 4-positions, as well as a tetrasubstituted example

    General relativity on a null surface: Hamiltonian formulation in the teleparallel geometry

    Get PDF
    The Hamiltonian formulation of general relativity on a null surface is established in the teleparallel geometry. No particular gauge conditons on the tetrads are imposed, such as the time gauge condition. By means of a 3+1 decomposition the resulting Hamiltonian arises as a completely constrained system. However, it is structurally different from the the standard Arnowitt-Deser-Misner (ADM) type formulation. In this geometrical framework the basic field quantities are tetrads that transform under the global SO(3,1) and the torsion tensor.Comment: 15 pages, Latex, no figures, to appear in the Gen. Rel. Gra
    corecore