13,856 research outputs found
Holomorphic Bisectional Curvatures, Supersymmetry Breaking, and Affleck-Dine Baryogenesis
Working in supergravity, we utilize relations between holomorphic
sectional and bisectional curvatures of Kahler manifolds to constrain
Affleck-Dine baryogenesis. We show the following No-Go result: Affleck-Dine
baryogenesis cannot be performed if the holomorphic sectional curvature at the
origin is isotropic in tangent space; as a special case, this rules out spaces
of constant holomorphic sectional curvature (defined in the above sense) and in
particular maximally symmetric coset spaces. We also investigate scenarios
where inflationary supersymmetry breaking is identified with the supersymmetry
breaking responsible for mass splitting in the visible sector, using conditions
of sequestering to constrain manifolds where inflation can be performed.Comment: 9 page
The Origin of the Electromagnetic Interaction in Einstein's Unified Field Theory with Sources
Einstein's unified field theory is extended by the addition of matter terms
in the form of a symmetric energy tensor and of two conserved currents. From
the field equations and from the conservation identities emerges the picture of
a gravoelectrodynamics in a dynamically polarizable Riemannian continuum.
Through an approximate calculation exploiting this dynamical polarizability it
is argued that ordinary electromagnetism may be contained in the theory.Comment: 8 pages. Misprint in eq. 15 correcte
Multiobjective analysis for the design and control of an electromagnetic valve actuator
The electromagnetic valve actuator can deliver much improved fuel efficiency and reduced emissions in spark ignition (SI) engines owing to the potential for variable valve timing when compared with cam-operated, or conventional, variable valve strategies. The possibility exists to reduce pumping losses by throttle-free operation, along with closed-valve engine braking. However, further development is required to make the technology suitable for accept- ance into the mass production market. This paper investigates the application of multiobjective optimization techniques to the conflicting objective functions inherent in the operation of such a device. The techniques are utilized to derive the optimal force–displacement characteristic for the solenoid actuator, along with its controllability and dynamic/steady state performance
The Inverse Shapley Value Problem
For a weighted voting scheme used by voters to choose between two
candidates, the \emph{Shapley-Shubik Indices} (or {\em Shapley values}) of
provide a measure of how much control each voter can exert over the overall
outcome of the vote. Shapley-Shubik indices were introduced by Lloyd Shapley
and Martin Shubik in 1954 \cite{SS54} and are widely studied in social choice
theory as a measure of the "influence" of voters. The \emph{Inverse Shapley
Value Problem} is the problem of designing a weighted voting scheme which
(approximately) achieves a desired input vector of values for the
Shapley-Shubik indices. Despite much interest in this problem no provably
correct and efficient algorithm was known prior to our work.
We give the first efficient algorithm with provable performance guarantees
for the Inverse Shapley Value Problem. For any constant \eps > 0 our
algorithm runs in fixed poly time (the degree of the polynomial is
independent of \eps) and has the following performance guarantee: given as
input a vector of desired Shapley values, if any "reasonable" weighted voting
scheme (roughly, one in which the threshold is not too skewed) approximately
matches the desired vector of values to within some small error, then our
algorithm explicitly outputs a weighted voting scheme that achieves this vector
of Shapley values to within error \eps. If there is a "reasonable" voting
scheme in which all voting weights are integers at most \poly(n) that
approximately achieves the desired Shapley values, then our algorithm runs in
time \poly(n) and outputs a weighted voting scheme that achieves the target
vector of Shapley values to within error $\eps=n^{-1/8}.
Evidence of Skyrmion excitations about in n-Modulation Doped Single Quantum Wells by Inter-band Optical Transmission
We observe a dramatic reduction in the degree of spin-polarization of a
two-dimensional electron gas in a magnetic field when the Fermi energy moves
off the mid-point of the spin-gap of the lowest Landau level, . This
rapid decay of spin alignment to an unpolarized state occurs over small changes
to both higher and lower magnetic field. The degree of electron spin
polarization as a function of is measured through the magneto-absorption
spectra which distinguish the occupancy of the two electron spin states. The
data provide experimental evidence for the presence of Skyrmion excitations
where exchange energy dominates Zeeman energy in the integer quantum Hall
regime at
Proof of principle of a high-spatial-resolution, resonant-response gamma-ray detector for Gamma Resonance Absorption in 14N
The development of a mm-spatial-resolution, resonant-response detector based
on a micrometric glass capillary array filled with liquid scintillator is
described. This detector was developed for Gamma Resonance Absorption (GRA) in
14N. GRA is an automatic-decision radiographic screening technique that
combines high radiation penetration (the probe is a 9.17 MeV gamma ray) with
very good sensitivity and specificity to nitrogenous explosives. Detailed
simulation of the detector response to electrons and protons generated by the
9.17 MeV gamma-rays was followed by a proof-of-principle experiment, using a
mixed gamma-ray and neutron source. Towards this, a prototype capillary
detector was assembled, including the associated filling and readout systems.
Simulations and experimental results indeed show that proton tracks are
distinguishable from electron tracks at relevant energies, on the basis of a
criterion that combines track length and light intensity per unit length.Comment: 18 pages, 16 figure
Suppression of geometrical barrier in crystals by Josephson vortex stacks
Differential magneto-optics are used to study the effect of dc in-plane
magnetic field on hysteretic behavior due to geometrical barriers in
crystals. In absence of in-plane field a vortex
dome is visualized in the sample center surrounded by barrier-dominated
flux-free regions. With in-plane field, stacks of Josephson vortices form
vortex chains which are surprisingly found to protrude out of the dome into the
vortex-free regions. The chains are imaged to extend up to the sample edges,
thus providing easy channels for vortex entry and for drain of the dome through
geometrical barrier, suppressing the magnetic hysteresis. Reduction of the
vortex energy due to crossing with Josephson vortices is evaluated to be about
two orders of magnitude too small to account for the formation of the
protruding chains. We present a model and numerical calculations that
qualitatively describe the observed phenomena by taking into account the
demagnetization effects in which flux expulsion from the pristine regions
results in vortex focusing and in the chain protrusion. Comparative
measurements on a sample with narrow etched grooves provide further support to
the proposed model.Comment: 12 figures (low res.) Higher resolution figures are available at the
Phys Rev B version. Typos correcte
- …